UNCLASSIFIED

UNCIASSIFIECL

Classification canceled Ichanged to 70

by Gal Change A. date 11 may 62

History of

FLIGHT.
SUPPORT

HOLLOMAN AIR DEVELOPMENT CINTER

799465-7957

FOR OFFICIAL USE ONLY (AFR 11-30)

HISTORICAL BRANCH
OFFICE OF INFORMATION SERVICES
HOLLOMAN AIR DEVELOPMENT CENTER
HOLLOMAN AIR FORGE BASE, NEW MEXICO

UNCLASSIFIED

2636

MADC ADJ 57 - 522 1

4-1488-17

FOR OFFICIAL USE ONLY (AFR 11-30)

Classification canceled (changed to Fa Official Use Only by authority of Lte & AFMDC HADC

by Hale A date 11 may 62

Harris

UNCLASSIFIED

C7 - 650

Capy # 27
WADC ADJ 57 - 522 1

RM-77-2636

UNISERSIFIED

HISTORY

of

FLIGHT SUPPORT

HOLLOMAN AIR DEVELOPMENT CENTER

1946 - 1957

HISTORICAL BRANCH OFFICE OF INFORMATION SERVICES HOLLOMAN AIR DEVELOPMENT CENTER AIR RESEARCH AND DEVELOPMENT COMMAND UNITED STATES AIR FORCE

AUTHORIZATION

This material contains information affecting the national defense of the United States within the meaning of the Espionage Laws, Title 18, USC, Sections 793 and 794, the transmission or revelation of which in any manner to an unauthorized person is prohibited by law.

This document is classified SECRET inasmuch as the contents are derived from documents of which the highest classification is SECRET and paragraphby-paragraph classification is impractical if not impossible.

> SPECIAL HANDLING REQUIRED NOT RELEASABLE TO FOREIGN NATIONALS

The information contained in this document will not be disclosed to foreign nationals or their representatives.

This document prepared in accordance with provisions of AFR 210-3 (30 August 1951), AFR 210-3A (12 February 1953), AFM 210-1 (1 December 1955), Editorial Style Sheet for Air Force Military History (October 1949), and AFR 205-1 (15 December 1953).

EDITORIAL NOTE

The History of Flight Support, Holloman Air Development Center, 1946-1957, by Dr. David Bushnell of the Center Historical Office, carefully examines from many approaches a complex and constant problem. A glance at the sources used for this study will indicate that Dr. Bushnell has brought to bear upon various aspects of the subject a wealth of documentary materials and the considered opinions of many persons active in providing flight support for the multitude of Air Force, Army and Navy research and development projects which use the vast Holloman-White Sands test range.

This history, also published as Book I of the first volume of History of Holloman Air Development Center, 1 July - 31 December 1956, has been issued under separate cover to make possible a wider distribution than permitted the full series of volumes concerning the broad history of Holloman Air Development Center.

JAMES STEPHEN HANRAHAN Center Historian

FOREWORD

No detailed justification should be needed for a history of air support operations at Holloman Air Development Center. Since most actual development work in guided missiles and related fields is carried on by private contractor companies, air support is perhaps the most important single commodity provided by the Center from its own resources. In addition, air support has been a "problem area" during recent years; its real and alleged deficiencies have been a topic of controversy, and it is thus all the more advisable to bring the relevant facts together in accessible and accurate form.

However, the preparation of this study has presented certain special problems. Much of the available technical data on flight support of missile-testing is highly technical; and, whether technical or not, there is far more available on some phases of the problem than on others, and far more on the last two years than on the previous background. Then, too, as in all monographs of this nature, it has been hard to strike a balance between the wealth of illustrative detail that can give a study its future value as a reference and the brevity without

FOREWORD

No detailed justification should be needed for a history of air support operations at Holloman Air Development Center. Since most actual development work in guided missiles and related fields is carried on by private contractor companies, air support is perhaps the most important single commodity provided by the Center from its own resources. In addition, air support has been a "problem area" during recent years; its real and alleged deficiencies have been a topic of controversy, and it is thus all the more advisable to bring the relevant facts together in accessible and accurate form.

However, the preparation of this study has presented certain special problems. Much of the available technical data on flight support of missile-testing is highly technical; and, whether technical or not, there is far more available on some phases of the problem than on others, and far more on the last two years than on the previous background. Then, too, as in all monographs of this nature, it has been hard to strike a balance between the wealth of illustrative detail that can give a study its future value as a reference and the brevity without

which few operating officials can be expected to skim even hastily through its pages.

Individual readers and using agencies must decide for themselves whether these problems have been resolved successfully. First of all, however, it is necessary to acknowledge the invaluable help that has been received from Army, Navy, and Air Force officers, civil service employees, and contractor officials in preparing this volume. The final responsibility for facts and judgments presented remains with the Historical Branch, but factual data and interpretive comments obtained through interviewing have been liberally used along with the standard documentary sources. So many individuals have been questioned regarding different aspects of the air support story, in fact, that it is literally impossible to list and thank every one within the scope of this Foreword.

One group must be singled out for special appreciation:
Major John J. Anderson, Chief of the Operations Division of
the Deputy Chief of Staff for Operations, and all the officers
and secretaries who serve in his division. Because in its
functions it touches upon a broader array of air support
problems than any other single agency at Holloman, the members
of this division have been subjected to questioning and their
file cabinets searched at all hours of the working day.
Specifically, valuable data has been received from all the

which few operating officials can be expected to skim even hastily through its pages.

Individual readers and using agencies must decide for themselves whether these problems have been resolved successfully. First of all, however, it is necessary to acknowledge the invaluable help that has been received from Army, Navy, and Air Force officers, civil service employees, and contractor officials in preparing this volume. The final responsibility for facts and judgments presented remains with the Historical Branch, but factual data and interpretive comments obtained through interviewing have been liberally used along with the standard documentary sources. So many individuals have been questioned regarding different aspects of the air support story, in fact, that it is literally impossible to list and thank every one within the scope of this Foreword.

One group must be singled out for special appreciation:
Major John J. Anderson, Chief of the Operations Division of
the Deputy Chief of Staff for Operations, and all the officers
and secretaries who serve in his division. Because in its
functions it touches upon a broader array of air support
problems than any other single agency at Holloman, the members
of this division have been subjected to questioning and their
file cabinets searched at all hours of the working day.
Specifically, valuable data has been received from all the

following officials, in addition to Major Anderson himself:
Captain Jack H. Patterson, who has served in the Operations
Division first as Flying Safety Officer and more recently as
Aircraft Allocations Officer; Captain Jacob J. Quintis, Chief
of the Operations and Training Branch; Captain Kenneth E.
Harman, currently Flying Safety Officer; Mr. William A.
Stevens, who was Aircraft Allocations Officer before Captain
Patterson; and Mr. E. A. Weston, Assistant Aircraft Allocations
Officer.

Assistance has been received at Center staff level from Golonel Gregorio P. Martinez, Jr., Deputy Chief of Staff for Materiel; Lieutenant Colonel Ulysses W. Hess, Deputy Chief of Staff for Personnel; Lieutenant Colonel William F. Haizlip, Inspector General; Captain Arthur G. Miller, Staff Maintenance Officer; and Major Charles LaBarr, Director of Procurement.

Various officials of the 6580th Air Base Group have also provided information when requested. Among these are Colonel Thomas C. Kelly, Base Commander; Lieutenant Colonel Oakley W. Baron, Chief, Flight Test Division; Major Mahlon A. Steiner, Chief, Flight Test Operations Branch; Major Hubert S. Williams, Commander of the 6580th Field Maintenance Squadron; Contain Robert L. Hardie, Accountable Supply Officer, 6580th Supply Squadron; Major Freddy L. Steadman, Maintenance Control Officer; Mr. John E. Tillotson, Assistant Maintenance Control Officer;

Chief Warrant Officer Joseph W. Rynkiewicz, Aircraft Maintenance Officer.

Both Air Force and contractor officials in Holloman's restricted "West Area" have supplied data and comments within their own technical specialties. In the Directorate of Aircraft Missile Test, help has been received from Lieutenant Colonel Theodore B. Swanson, Deputy Director; Major Archer W. Kinny, Jr., Assistant Deputy Director; Major Kenneth A. MacAaron, Chief, Operations and Plans Division; Captain Harley L. Grimm, Chief, F-101 Branch; Captain Norbert D. LaVally, Chief of Technical Evaluation, Air Defense Missile Branch; Mr. A. F. LaPierre, Assistant Chief, Missile Countermeasures Division; and Mr. William T. Fisher, Electrical Engineer, Drone Systems Test Branch. Elsewhere in the West Area, the following have supplied information: Major William M. Stowell (United States Army), Chief, Range Instrumentation Development Division, Integrated Range Mission; Dr. Anthony J. Wilk, Chief, Multisystems Application Branch, within the same division; Mr. Eugene E. Crowther, Test Director, Lockheed Aircraft Corporation; Mr. Edward E. Rizh, Optical Physicist, Hughes Research and Development Laboratories, and other Hughes Aircraft Company personnel; and Mr. Lawrence V. Overell, Contract Specialist, Alamogordo Air Procurement Office.

١, ١

Still other Holloman officials to whom acknowledgment is

due include Colonel John P. Stapp, Chief, and Captain Druey P. Parks, Administrative Officer, Aero Medical Field Laboratory; Major David G. Simons, Chief, Space Biology Branch; Captain Grover J. Schack, project officer for sub-gravity studies; Major John C. May, Chief, and Mr. James O. Rogers, Assistant Chief, Manpower and Organization Division, Deputy Chief of Staff for Operations; Mr. Harry Clifford, who also served until recently in that division; Commander Elton W. Bode, Naval Liaison Officer; Mr. Gerald E. Hanson, Administrative Officer in the Office of Deputy Chief of Staff for Materiel; and Mr. John W. Carter, Chief, Management Analysis Division, Deputy Chief of Staff for Comptroller.

Two tenant organizations at Holloman, the 3225th Drone Squadron and Detachment 3 of the United States Army Garrison at White Sands Proving Ground, have also proved extremely helpful. In the Drone Squadron thanks are due principally to Lieutenant Colonel Dean D. Conard, Commander; Major William W. Gray, Jr.; Captain Allan H. Hoover, Captain Milton R. Roberts; Lieutenant James M. Shoemaker; and Master Sergeant Fuller. In Detachment 3 acknowledgements are due above all to Captain Robert L. Hurd, Chief, Army Aviation Branch.

Full cooperation has also been received from officials of all three services at White Sands Proving Ground, notably including Lieutenant Colonel Wilbur D. Pritchard, Deputy for

Air Force, Integrated Range Mission; Mr. F. D. Moore, Range Facilities Control Officer; Mr. Samuel R. Cooper, Chief, Scheduling Section, Systems Test Division, WSPG; Commander T. C. Buell, Executive Officer, and Mr. G. Harry Stine, General Engineer, Naval Ordnance Missile Test Facility.

One more officer must be mentioned here since he answered mumerous questions by mail and in person on topics entirely outside the scope of the duties he was fulfilling at the time: Colonel William H. Baynes, former Commander of Holloman Air Force Base, and only recently retired as Deputy for Missiles, Directorate of Systems Management, Air Research and Development Command Detachment 1. This still does not complete the list of persons who have helped in the gathering of data for the present volume. However, of those who cannot be included here, a few more (though admittedly not all) will be duly cited in the footnote references. In every case, once again, the Historical Branch wishes to express its appreciation for assistance rendered.

100

CHRONOLOGY

	1942	Alamogordo Army Air Base is established as a bomber training base.
	1945	White Sands Proving Ground is established, by the United States Army, on a section of the Tularosa Basin adjoining the bombing range of Alamogordo Army Air Field. German V-2 components are obtained for use in rocket experimentation at White Sands.
February	1946	Alamogordo Army Air Field placed on a stand-by basis, following the completion of its wartime training mission.
April	1. ',6	After brief period of inactivation, Alamogordo Army Air Field is reactivated. It is assigned a new training mission, as well as a role in support of rocket experimentation at White Sands.
March	1947	Air Materiel Command shifts the Air Force guided missile program at Wendover Field, Utah, to Alamogordo Army Air Field.
September	1948	Ceremony changing the name of Alamogordo Army Air Field to Holloman Air Force Base. Original authorization for the change of name was in a Department of the Air Force Official Order dated 13 January 1948.
March	1910	Department of the Air Force transfers operational control of Air Force activities at Condron Field, White Sands Proving Ground, from Biggs Air Force Base to Holloman. However, Condron Field remains an Army installation (until the integration of the ranges in 1952), and Biggs continues to provide some air support to White Sands projects (also until the integration of the ranges).
	February April March September	April 1'.6 March 1947 September 1948

A drone detachment from Air Proving 1951 September Ground Command comes to Holloman Air Force Base to support both Holloman and White Sands testing. It is the forerunner of the present 3225th Drone Squadron. Holloman and White Sands ranges consolidated. 1952 September Ordered by the Department of Defense in the interests of economy and to provide an integrated range for the development and testing of guided missiles. General Order 30, issued at White Sands September Proving Ground, establishes rules for operation of the integrated range and assigns to the Air Force (Holloman) primary responsibility for all air support needed on the range by any of the three services. Detackment 3 of 9393rd Technical Services 1952 October Unit (now United States Army Garrison, White Sands Proving Ground) comes to Holloman to provide missile recovery service for all users of the range. Holloman Air Development Center estab-1952 October 10 lished as command organization at Holloman Air Force Base, replacing the 6580th Missile Test Wing. Joint Use Agreement signed between Holloman 1952 December Air Development Center and naval drone detachment. The latter becomes active about 1 January 1953 and continues service at Holloman until June 1955. Fighter chase operations converted entirely 1954 to jet aircraft. First F-100 aircraft assigned to Holloman, 1.955 to become (ultimately) the basic chase type. Early F-100 operations brought a severe rash of maintenance and other difficulties. Center reorganization establishes, in 1955 February general, the present arrangement of air

support functions. Flight operations

			(non-test as well as test) are entrusted to the Flight Test Division, while both organizational and field maintenance are assigned to the 6580th Field Maintenance Squadron.
	Spring		Completion of first major improvements on Holloman runways since World War II. Two runways were lengthened to over 12,000 feet.
		1956	Holloman has an accident rate of 62.3 per 100,000 flying hours, the worst in Air Research and Development Command.
13	July	1956	Daily instead of weekly mission scheduling instituted on the integrated range, in order to cope with increased scale of operations.
	August	1956	Holloman aircraft in-commission rate sinks to 36.2 for test support and 24.1 for non-test aircraft.
1	August	1956	Eleven base-assigned aircraft placed in temporary storage for lack of maintenance capability.
1	September	1956	It. Col. William F. Haizlip, Holloman's Inspector General, takes command of the 6580th Field Maintenance Squadron with the special purpose of carrying out a general squadron reorganization. The latter continues after he leaves the command (2 January 1957) and contributes to a steady improvement in the maintenance situation.
1	November	1956	Urged by Headquarters, Air Research and Development Command, Holloman requests authority to contract with a private firm for aircraft maintenance.
20	December	1956	Flying Safety Office, after numerous organizational and physical moves, is attached for administrative purposes to the Deputy Chief of Staff for Operations. The incumbent is assured direct access

to the Deputy Center Commander.

21	January	1957	Plane belonging to the Army recovery service is caught in a telephone wire, thus ending a sixteen-month perfect flying safety record for Army aviation at Holloman.
	May	1957	1377 hours flown by base-assigned aircraft, setting new record for a single month.
	June	1957	One accident during the month spoils the Center's flying safety record for 1957, which had been perfect so far. Some consolation could be found in the fact that in-commission time for test support aircraft during June reached 81.0 per cent.

CONTENTS

EDITO	RIAL NOTE	iii
FOREW	ORD	iv
CHRON	OLOGY	x
I	THE FOUNDATIONS OF HOLLOMAN AIR SUPPORT: 1946-52	2
	Early Flight Operations	2
	Support of White Sands Proving Ground V-2 Firings	3
	Inauguration of Air Force Missile Program at Alamogordo Army Air Field	6
	Basic Categories of Air Support Aircraft Inventory Problems of Operation	7 10 12
	Continuing Support for White Sands Proving Ground Notes	17 21
II	AIR SUPPORT ON THE INTEGRATED RANGE: INCREASING SCALE AND COMPLEXITY OF OPERATIONS, 1952-1957	25
	Range Integration and Air Support	25
	Units, Planes, and Men: The Division of Labor in Flight Operations	28
	Organizations Base-Assigned Aircraft Inventory Army Aviation Recovery Service Naval Drone Detachment at Holloman (1953-55) 3225th Drone Squadron Bailed Aircraft at Holloman Borrowed, Transient, and Other Aircraft at Holloman	28 30 32 37 37 37
	Growing Scale and Complexity of Operations	48
	Increase in Flying Hours and Test Operations	4

	Changes in Scheduling and Facilities Arrival of More Advanced Aircraft Types Changes in Launch-Type Operations New Chase Requirements and Problems Other Recent Developments in Air Support Services	19 52 54 59
	Notes	64
III	FAILURES AND PROBLEM AREAS	73
	Delays and Candellations for Lack of Air Support Complaints of White Sands Proving Ground Agencies	73 76
	Aircraft Allocations	79
	Aircraft Maintenance and Related Problems	82
	Sagging In-Commission Rates Difficulties in Parts Supply, Followed by Recent Sharp Improvement Shortage of Maintenance Manpower Efforts to Reduce the Aircraft Inventory Contract Maintenance Proposed Recent Improvements in Maintenance Effectiveness	83 85 88 95 98
	Flying Safety	102
	Increasing Accident Rate, 1953-56 Renewed Emphasis on Flying Safety	102
	Pilot Strength	107
	Administrative Weaknesses	109
	Complaints of Poor Coordination Among Air Support Agencies Planned Reorganization of Air Support Functions	110
	The Present Outlook	115
	Notes	ווו
	GLOSSARY	13

139

INDEX

APPENDICES

- A. White Sands Proving Ground Technical Order Number 6, 7 October 1952.
- B. Joint Use Agreement, Holloman Air Development Center and 9393rd Technical Service Unit, 1 September 1953.
- C. Joint Use Agreement, Holloman Air Development Center and Detachment, Utility Squadron. 3, 1 December 1952.
- D. DCS/Operations Policy Guidance Number 3, 4 April 1956.
- E. Tenant and Bailed Aircraft at HADC. List prepared about 15 April 1957.
- F. A/C and Manpower Requirements by Project. List prepared about 1 March 1957.
- G. Ltr., Col. Richard C. Gibson, DCS/O, HADC, to Cmdr., ARDC, subj.: "Support Problems for B-57 Aircrait," 22 October 1956.
- H. Flight Test Division Standard Operating Procedure Number 25, versions as of 19 December 1956 and 17 May 1957.
- I. DCS/Operations Policy Statement Number 4, 13 September 1955.
- J. Manpower Requirements for Aircraft Maintenance. Memo from Manpower & Organization Division, September 1956.
- K. Citation to Accompany the Award of the Commendation Ribbon to William F. Haizlip.
- L. General Comments on the [Holloman] Flying Safety Program, by Maj. Raymond C. Latham, Chief, Flying Safety Branch, Hq., ARDC, May 1956.

HISTORY

αſ

FLIGHT SUPPORT
HOLLOMAN AIR DEVELOPMENT CENTER
1946 - 1957

CHAPTER I

THE FOUNDATIONS OF HOLLOMAN AIR SUPPORT: 1946-52

In the second half of 1956 air support became a major topic of conversation, correspondence, and staff studies at Holloman Air Development Center. Its deficiencies were dramatized on 1 August when eleven planes were put temporarily in storage for lack of a maintenance capability, and though the problems associated with this one aspect of the Holloman mission--shortage of qualified maintenance people, multiplicity of aircraft types, difficulties of coordination between scheduling and related functions -- were by no means new, they seemed all at once to have reached a more critical stage. The chief immediate cause of this development was the growing scale of operations on the Holloman-White Sands Integrated Range, which in 1956 for the first time became literally "saturated" with research and development missions. Most features of the air support problem, however, had their precedents in the early days of missiletesting in the Tularosa Basin starting ten years before.

The one time when flight operations loomed largest had been World War II, when Holloman, then known as Alamogordo Army Air Field, was a training center for heavy bombardment crews.

A training program, however, presented somewhat different problems from the later support of missile-testing, and in any case

it came to an abrupt halt when war ended. At the start of 1946 the base was briefly put on inactive status, the remaining B-29's were ferried out to Ogden, Utah, and exactly one aircraft was left assigned: a humble C-45 to be used for local proficiency and administrative flights. This one plane, with base commander Colonel Kermit D. Stevens at the controls, was wrecked on a routine flight in July 1946 when a B-17 taxied into it. Fortunately, a replacement was soon provided so that Alamogordo Army Air Field was left only temporarily with no assigned aircraft to 2 fly at all.

Although the scarcity of base-assigned planes continued for some time, the use of Alamogordo Army Air Field by outside organizations caused the tempo of flight operations to increase once again in the spring of 1946. For one thing, starting in April, the wartime Alamogordo bombing range was put back into use for a Tactical Air Command gunnery training program known as the Frangible Bullet Project. Aircraft and personnel in this program were not regularly assigned to the base, but local shops and related facilities had to service the equipment used; and the more proficiency aerial gunners developed, the more repair jobs had to be carried out on the P-63 target planes. At the same time, Alamogordo Army Air Field helped support the rocket firings conducted nearby at the Army Ordnance Department's White Sands Proving Ground. It played host to hordes of visiting

aircraft on V-2 firing days, when spectators came from far and wide to see the show, and regularly assigned maintenance crews proved insufficent to handle the workload. In addition, there were planes accually stationed at Alamogordo on temporary duty or some other basis to support White Sands operations. Watson Laboratories, whose special mission was to provide and operate radar research and tracking equipment on the White Sands range, brought about a half dozen small- and medium-sized aircraft (such as I-5's and C-47's) for administrative and cargo flights, tracking flights to test radar equipment, and missile recovery on the range itself.

In order to assist flight operations on the White Sands missile range, a supplementary landing strip known as Condron Field was prepared near the headquarters or "cantonment" area of the Proving Ground. This field was used by the aircraft stationed at Alamogordo and also by occasional missions flown from Biggs Air Force Base, El Paso, Texas, in support of the testing program. Flights from Biggs were for such purposes as recovery, liaison, and aerial survey; they usually consisted of one plane at a time, although more would be provided on firing days; and they were flown not as a regular function but as requested, on a day-to-day basis. In response to petitions from Army Ordnance Department, the first lieutenant at Biggs who had borne the brunt of flying missions for

White Sands was reassigned to duty with the Proving Ground-whereupon Biggs refused to let him fly its planes. Biggs continued to lend aircraft, but the Proving Ground pilot could go along merely as a passenger, a problem wholly solved only when the Proving Ground obtained its own assigned aircraft. Condron Field was also used by an assortment of private planes, some belonging to "prominent civilians of surrounding cities" and others to organizations connected with the Army's missile program. Douglas Aircraft Company, which as far back as 1946 was conducting research and development on the Nike antiaircraft rocket, operated a biweekly freight and passenger service with one C-47 between Condron and its Santa Monica home office. 6 Nevertheless, Condron operations, including those actually flown from Biggs Air Force Base, remained small in scale compared with operations of one sort or another at Alamogordo Army Air Field.

What is more, the number of base-assigned planes at Alamogordo, which had been exactly one in the spring and summer of 1946, began to climb again in November 1946 and reached twenty-five, including thirteen P-63's, the following February. This change followed the regular assignment to Alamogordo Army Air Field of the Consolidated Gunnery Training School of the Eighth and Fifteenth Air Forces. The Gunnery Training School took the place of (and in a sense absorbed) the Frangible Bullet

Project; and neither one had anything to do with air support of missile tests. But the new training program was short-lived, lasting only from November 1946 to March 1947, when the Alamogordo base was transferred to the jurisdiction of Air Materiel Command for use in the Air Force's own guided missile program. From that time onward, flight operations at Alamogordo Army Air Field, soon renamed Holloman Air Force Base, had only one primary objective: the support of testing and development programs in guided missiles and related fields.

The change in function and command jurisdiction was promptly reflected in the base aircraft inventory. Although the Watson Laboratories' aircraft detachment remained on a separate footing as before -- and was not amalgamated with base-assigned aircraft until some months later-planes belonging to the Consolidated Gunnery Training School were removed and were replaced by others required for the new mission. In April, the first full month of Air Materiel Command operations, the assigned inventory (i.e., not including Watson Laboratories aircraft) was thirteen as compared with February's twenty-five. This reduction reflects the fact that the amount of actual flying required for test purposes was at first fairly modest. The number of projects was not great, and the flight requirements for any one project were usually well spaced. Colonel William H. Baynes, who commanded the base in 1949-52, was able to write that flight operations

were "a minor part of the overall activity" at the base.

Nevertheless, by the time Colonel Baynes' command ended, all
the basic types of air support were evolved that have continued
at Holloman down to the present.

The most common type of direct air support to missile projects, including the earliest V-2 firings at White Sands, was range recovery—spotting an impact point, leading in ground recovery crews, or even recovering the missile wholly by plane. In this field the L-5 was pre-eminent at first, but other small, low-speed aircraft were also used; helicopters joined the recovery fleet before long, although none were present originally.

A type of air support almost as widespread as recovery was the chase function, which could be seen in perhaps its purest form on high-altitude research balloon missions; in such cases the balloon was escorted by Holloman aircraft throughout its cross-country wanderings, and the same aircraft would participate in final recovery. More common, however, were photographic chase and safety chase on the Holloman range itself. A single plane might perform both services, if both were needed on a given mission, or one might be used for photography and another for safety control, keeping a watch for any dangerous malfunction during a project test and standing ready to shoot down the test vehicle if conditions demanded. For either variety of chase, fighter aircraft were normally best suited. However, the

photographic function could sometimes be performed without any chase aircraft at all, simply by mounting cameras on a launch aircraft.

Launch aircraft represented a slightly more limited category of air support, since obviously no launch plane was used for a ground-launched missile. On the other hand, neither was air-launching used only for missiles in the strict sense, such as the Rascal strategic bombardment missile and the Tarzon radio-controlled bomb, which were among the earliest projects brought to Holloman by Air Materiel Command. Air-launching was likewise used to test parachute systems for the safe recovery of test vehicles, and, starting in mid-1952 at the latest, for dropping parachute targets.

As one would expect from the analogy with conventional bombing, bomber aircraft were extensively used for launch purposes. But for some projects—such as small missiles and reduced-scale models of larger ones—fighters were equally or more suitable and were used from the outset.

A launch plane might also conduct captive flight tests, simply by not letting go of the missile. But captive testing was susceptible of a great many variations, since the parts of a missile system could be tested individually and the aircraft requirements in each case were not necessarily the same. For instance, the Rascal and its reduced-scale version known

as Shrike always used one of several bomber-type launch planes, but the guidance mechanism alone could be and was mounted in F-80's for captive flight testing. In this case the F-80 was accompanied by a B-17 (later changed to B-50) to give the guidance signals; the fighter acted as a simulated missile, and the bomber as a director aircraft. Indeed it was part of the basic Rascal concept for the launch plane to be equipped as a director and give signals to the missile over the first part of its course after it was launched. Thus, in a free-flight test of this particular system, both launch and director support were always required, even if performed by the same aircraft. However, a more typical use of director aircraft was in drone operations, meaning either the development of new drone types or the operational use of target drones in missile-testing. Operational drone flights at Holloman really date from the arrival in September 1951 of a drone detachment from Air Proving Ground Command that has since developed into the 3225th Drone Squadron. And certainly the most common director of all was the B-17, which not only performed this function in the first F-80/Rascal tests but became a mainstay of the Drone Squadron as well.

A final type of direct air support required in missiletesting was the tracking mission, in which an aircraft was flown for the purpose of testing instruments on the ground. The latter might be only the normal range instrumentation, or the object tested could be the guidance mechanism of a missile, to see if it would effectively "pick up" a simulated target.

Just as a single plane could perform more than one support function in the same test, it was also possible for a plane to fly on tests in support of more than one project. This was taken for granted in the case of recovery missions, for which requirements did not vary much from project to project. Launch aircraft were not so easily interchangeable, because of widely varying missile sizes and characteristics, special equipment needed, and so forth. It was possible for one B-29 to launch both the Tarzon bomb and a parachute recovery test vehicle for Shrike, but clearly no fighter-type launch aircraft could do the same. Chase aircraft fell somewhere between recovery and launch aircraft with respect to interchangeable status. Even so, research and development inevitably required a larger number of aircraft types in proportion to total aircraft that did, say, a tactical or training mission. The thirteen base-assigned planes of April 1947 were divided into eight different major types; by October 1952 the base had seventeen aircraft of ten different types. To be sure, test support aircraft were only part of this inventory. A few cargo and liaison planes were always needed for administrative, logistical, and other non-test flights which had to be carried out whether or not they had

any direct relation to the mission of the base. Colonel Paul F. Helmick, the first base commander after the shift to Air Materiel Command, personally took to the air on 4 July 1947 to airlift patients from Holloman to the Army's William Beaumont General Hospital at El Paso, Texas. He likewise flew a C-47 in 1949's "Operation DDT," carefully spraying his own base for purposes of insect control.

The aircraft totals mentioned above naturally do not tell the whole story, since there were always numerous aircraft stationed at Holloman that were not technically "base-assigned." If the planes assigned to Warson Laboratories, basically a tenant activity, were included in the total for April 1947 the figures would be twenty aircraft of nine different types. One must also take account of planes bailed by the Air Force to private contractor companies engaged in development work at Holloman, for bailed planes began to appear very early in the history of the missile program -- e.g., a P-47, the only one on base, which was bailed to Republic Aviation Corporation for use as a launch plane for the one-ninth scale model of Republic's 16 MX-773 ramjet missile. Then, too, planes were occasionally brought to Holloman on loan from other bases, usually to participate in specific tests: an example of this procedure was the loan of two F-80's from Williams Air Force Base, Arizona, to be used as safety chase aircraft in a test of the JB-2 jet-bomb

missile in July 1948. However, records of bailed and loaned planes are very inadequate, so that it is impossible to state exactly how they affected the total number of either aircraft or aircraft types.

By and large, the number of aircraft present was adequate throughout the period under consideration. In February 1952 and for several months thereafter the base had not one administrative aircraft assigned, but presumably planes coded for other duties were diverted as needed, and there is no indication that major difficulties resulted. Nor is there any indication that Holloman ever suffered a serious shortage of test support planes, although a project might still be handicapped temporarily by a delay in the scheduled arrival of a particular type. One of the many strokes of bad luck that have plagued the Rascal missile system was a strike at the home plant of Bell Aircraft Corporation in Buffalo, New York, which interfered with modification work on the first B-50 assigned to the project and so held up the plane's arrival for many weeks. Then, after the strike ended, the plane suffered an in-flight accident during a preliminary test mission at Buffalo, causing still further delay; when the B-50 finally reached Holloman it was a half year late.

Even after an aircraft reached Holloman it was not always available when needed. For instance, the Martin Matador project

was grounded in September 1919 for lack of both command control (i.e., director) and chase aircraft to accompany the missile on test flights. In this case both the DF-80 and the F-84 aircraft normally used were out of commission, naturally there were other cases, too, in which aircraft out of commission hampered the work of a project. It is even surprising that this did not happen more often. Not only was there a certain amount of aircraft modification work that had to be carried out in the Holloman maintenance shops, as project requirements demanded, but also the entire base maintenance function labored under the handicap already mentioned of a high ratio of aircraft types to total aircraft. In this connection it is worth noting that the base was partially responsible even for the maintenance of planes bailed to mission contractors. The original Rascal project B-50, which was seemingly the first B-50 ever to alight at Holloman, was bailed to Bell Aircraft Corporation but was maintained by the base. 21 A B-29 bailed to Lockheed Aircraft Corporation in 1951 was to be maintained seventy-five percent by the base and 22 twenty-five percent by the contractor. In certain other cases the records do not indicate who performed maintenance, but even if a contractor assumed full responsibility the base could be called on to provide auxiliary supply services, which was not always easy if a plane was of a type not present in

the assigned inventory. Yet despite these difficulties, and despite intermittent complaints of a shortage of maintenance personnel 23 --- which was not, of course, unique with Holloman--the record on maintenance was generally good. Soon after Holloman was transferred to the newly-formed Air Research and Development Command, in 1951, Lieutenant General Earle E. Partridge took time as Commanding General to pay tribute to the "excellent" quality of "aircraft and equipment maintenance" at Holloman as revealed by a special staff visit. This record was all the more notable, he pointed out, when contrasted with the general inadequacy of maintenance at other installations in the command. The supply system also appears to have functioned smoothly on the whole; indeed Holloman went from December 1951 to June 1952 without a single plane out of commission for parts. 25

Some trouble, but less than one might expect, was caused by the assortment of occupational hazards that were faced by all planes used in air support operations. In April 1949 an F-84 shot down an experimental OQ-19 drone, was hit on the wing by part of its disintegrating target, and was wrecked on crash-landing; but this was quite exceptional. In the case of drones, particularly operational drones, being shot at and damaged was a recognized part of their mission, but the degree of damage still varied. A drone could often be repaired, or

a "new" drone put together out of parts left over from several others that were unrepairable. The hardy QB-17's above all have had an enviable salvage rate. In any event, drone repairs put still another burden on the maintenance shops, and sometimes on other units as well. In the summer of 1952 it was necessary to build a road into the desert for the express purpose of hauling out a QB-17 that was forced to land there after being hit by a missile. This was apparently the first road built to order for a drone, but it was not destined to be the last.

Some of the physical facilities available for aircraft maintenance and the like also served at times as occupational hazards of Holloman testing. In mid-1951 a B-50 was set on fire and suffered considerable damage as a result of an explosion overhead among the hangar lighting fixtures. All these were of "conventional or incandescent, exposed-bulb type," matching the hangar buildings themselves which were of semi-permanent wartime construction. For that matter, the concrete aprons and taxiways were also in poor shape. A November 1951 inspection revealed an apparently complete lack of preventive maintenance since the time they were built, which again was during World War II; new breaks and cracks had never been seaked, and the original joint material was badly deteriorated. In this case, and also that of the exploding light fixtures, needed improve-In addition, Colonel Helmick requested ments were authorized.

an extension of the three existing runways on the ground that their 8000 to 8400-foot maximum length was likely to inhibit operations, but nothing was done about this until 1955. On the other hand, two subsidiary landing strips were prepared in 1951 in the northern portion of the Holloman range. Both were suitable for C-47 type aircraft, and were designed to offer quick access to proposed instrumentation sites two or three hours distant by land from the main area of the base.

of all the resources needed for air support operations, the pilot staff seems to have posed fewest problems at this time with respect to either quantity or quality. Forty-nine pilots were assigned in August 1951 and sixty-four in May 1952. Either total was more than ample for normal operations, even though all base-assigned pilots then had other duties besides flying that usually demanded far more of their time. Moreover, the Drone Squadron and probably several of the mission contractors had full-time pilots of their own. In a few cases there might still be a lack of qualified persons for specialized flight-crew positions--Trizon bomb launchings, for instance, were cancelled in September 1951 because the only available B-29 (launch aircraft) engineer was suddenly hospitalized 33--but such crises certainly were not frequent.

In addition to the conduct of Air Force missile tests at Holloman, the base continued to provide a certain amount of

support to the similar operations of both Army and Navy at the Army's White Sands Proving Ground. This support, as mentioned above, had started before the Air Force brought its own missile program to Holloman. Though the total effort required was never great until some time after the official integration of the Holloman and White Sands ranges in the latter part of 1952, the responsibility was already becoming rather complex.

One aspect of air support for White Sands was Holloman's growing involvement in the operation of Condron Field, the Army landing strip located in the vicinity of Proving Ground headquarters. Condron was used from the outset by at least some of the planes based at Holloman, but any regular Air Force supervision over operations there was entrusted originally to Biggs Air Force Base, which also granted landing clearances to transient aircraft when needed. Biggs likewise continued to give the Army a certain amount of direct flight support: in March 1949 the Tow Target Squadron at Biggs had five pilots and six L-5's performing search and recovery missions on the White Sands These L-5's naturally used Condron Field, and when the Proving Ground obtained a C-47 (or C-45 -- the documents give both designations) and an AT-11 of its own they were stationed there permanently. An inspection of activities at Condron about February 1949, by a Strategic Air Command inspector, revealed

a long list of rather serious discrepancies. Maintenance, including hundred-hour inspections, was being attempted by Army enlisted men who were not current in their specialties and lacked qualified supervision; the two planes assigned to the Proving Ground were being flown with incomplete flight crews and were in "very poor condition"; and so it went. The basic trouble seems to have been that Condron, in the words of a visitor from Headquarters, United States Air Force was "attempting to operate as a small Air Force Base, whereas it was originally authorized...to be used as an emergency landing strip, and as a pick-up and discharge point for VIP flights...."

Air Force headquarters accordingly prescribed and obtained a radical reform in the methods of operating Condron Field.

The field remained physically under care and jurisdiction of the Army, but final responsibility for all Air Force activities there—and likewise general supervision of flight operations—was transferred from Biggs to Holloman. The latter was deemed better fitted for the task in view of the close connection between its own mission and that of the Proving Ground. All clearances would have to be made henceforth through Holloman; and the two Army planes were ordered physically moved to Holloman, where they could be properly maintained by Air Force personnel. Since it took scarcely longer to fly from Holloman to Condron than to reach Condron by car from Proving Ground

headquarters, it was assumed that no serious delays would be encountered under the new arrangement and that efficiency and safety of operations would be enhanced. However, after the planes were transferred they had to be temporarily grounded until overdue technical order compliances and inspections were carried out.

Still more planes were brought to Holloman later for the express purpose of assisting the Army at White Sands. A B-26 arrived at the end of 1949 on 60-day loan from Langley Field, Virginia, to conduct radar tests and the like in the Army's Nike program. In due course it was assigned permanently, in order to serve not only the Nike program but a variety of Army and Air Force projects. Another B-26 for the use of White Sands Proving Ground arrived in July 1950, at which time a meeting was held to work out arrangements for the combined use of aircraft stationed at Holloman. Holloman officials pointed out that they lacked maintenance capability to keep all the aircraft currently on hand in flyable status, and that the hours of operation for each aircraft were not sufficient anyway to warrant maintaining all of the same type constantly in service. Hence it was agreed that the White Sands planes should be used, maintained and, when advisable, stored interchangeably 38 with similar aircraft assigned to Holloman.

Holloman still did not assume responsibility for assisting

White Sands recovery missions; the Air Force share in this particular task continued to be performed by Biggs Air Force Base even after other support functions had been taken over by But Holloman did add one more service of its own-drone target missions -- after the arrival in 1951 of the Air Proving Ground Command's Drone Squadron. Army spokesmen sometimes complained because there were not more drones to shoot at, but the Air Force would have liked more, too, and the quality of drone support was apparently quite satisfactory. On the whole. in fact. Holloman could be rather well satisfied with the support that it rendered in all the years from 1946 to 1952 both on its own range and at White Sands. The human and material resources available to do the job were not great in quantity, but then, as Colonel Baynes had said, flight operations were "a minor part of the overall activity." The great change in scale of air support was still a few years off; and, before it materialized, the formal integration of the Holloman and White Sands Proving Ground test ranges was to place the entire problem of air support into a new framework.

NOTES

CHAPTER I

- l. Below, p.
- 2. "History of Alamogordo Army Air Field"[hereinafter cited as "History of AAAF"], March 1946, supporting document 26; April 1946, p. 13; July 1946, pp. 1-2.
- 3. "History of AAAF," June 1946, supporting document 14.
- 4. Ibid., p. 6.
- 5. "History of AAAF," passim; telephone interview, Lt. Col. Wilbur D. Pritchard, Deputy for AF, IRM, WSPG, by Dr. David Bushnell, HADC Historian, 10 April 1957.
- 6. "Historical Information, White Sands Proving Ground, New Mexico, 9 July 1945...31 December 1952," pp. 44, 50.
- 7. "History of AAAF," 19-30 November 1946, p. 16; February 1947, p. 40.
- 8. "History of AAAF," 1-15 March 1947, p. 25; April 1947, pp. 27-28; telephone interview, Col. Pritchard by Dr. Bushnell, 10 April 1957.
- 9. Ltr., Col. William H. Baynes, Cmdr., HAFB, to Brig. Gen. W. G. Smith, subj.: [Control Tower Service], 23 August 1951.
- 10. "Historical Report...Holloman Air Force Base, New Mexico, 1 July 1952 to 31 August 1952," p. 62.
- "Historical Report, Holloman Air Force Base...! September 1951-31 October 1951," p. 68; "Historical Report, Holloman Air Force Base...! January 1952-29 February 1952," pp. 91-92; History of Holloman Air Development Center 1 January 1953 30 June 1953, p.60.
- 12. 1st ind., Capt. Ralph N. Andrews, Jr., Adjutant, 3205th Drone Group, Eglin AFB, 22 May 1957, to basic ltr. from Dr. Bushnell, subj.: [History of 3225th Drone Sq.], 6 May 1957.

- 13. HAFB, Progress Summary Report on U.S.A.F. Guided Missile Test Activities, 1 May 1949, p. 82.
- 14. "History of AAAF," April 1947, pp. 27-28; ARDC Reference Book, October 1952.
- 15. "History of AAAF," 1 July 31 December 1947 p. 58;
 "Historical Report on Holloman Air Force Base, 1 January 30
 June 1949," p. 3.
- 16. HAFB, Progress Summary Report, 1 February 1948, pp. 41-42.
- 17. Ibid., 1 July 1948, p. 27.
- 18. HAFB Reference Book, June 1952, pp. 15, 17.
- 19. HAFB, Progress Summary Report, September 1949, p. 77; October 1949, p. 87; December 1949, p. 90; February 1950, p. 82.
- 20. 2754th Experimental Wing, HAFB, "Historical Report for Operations and Projects for the month of September 1949," p. 8.
- 21. HAFB, Progress Summary Report, May 1950, p. 100.
- 22. Telephone interview, Mr. Lawrence V. Overell, Contract Specialist, Alamogordo Air Procurement Office, by Dr. Bushnell, 11 April 1957.
- 23. Cf. "History of AAAF," April 1947, p. 28.
- 24. Ltr., Lt. Gen. Earle E. Partridge, Cmdr., ARDC, to CG, AFMTC, subj.r "Staff Assistance Visit to HAFB," 3 December 1951.

 Partridge gave special praise to the engine conditioning program, maintenance control function, and degree of cooperation with San Antonio Air Materiel Area.
- 25. 6580th Maintenance and Supply Group, "Historical Data...

 July 1952." Presumably this refers simply to base-assigned aircraft.
- 26. "Historical Report on Holloman Air Force Base, 1 January 30 June 1919," p. 16.
- 27. "Historical Report...Holloman Air Force Base, New Mexico, 1 July 1952 to 31 August 1952," p. 115.

- 28. Ltr., Col. Baynes to CG, ARDC, subj.: "Project ALA 2B 38, Replace Lights in Hangars, HAFB," 24 September 1951.
- 29. Ltr., Hq., AMC to CO, 6540th MTW, HAFB, subj.: "Expansion Joint Seal, Concrete Aprons and Taxiway, HAFB," n.d. but about November 1951; 2nd ind., Hq., ARDC to CO, 6540th MTW, 16 November 1951, to basic ltr., Col. Baynes to CG, ARDC, subj.: "Project ALA 2B 36, Renovation of Hangar Building 301, HAFB," 24 September 1951.
- 30. Ltr., Col. Paul F. Helmick, Cmdr., HAFB, to CG, AMC, subj.: *1950 Fiscal Year Building and Facilities Program, 6 March 1948, with incls.
- 31. "Historical Report, Holloman Air Force Base...l January 1951-2 April 1951," p. 29.
- 32. HAFB Reference Book, June 1952, p. 17a.
- 33. "Historical Report...Holloman Air Force Base, New Mexico, 1 March 30 April 1952," p. 78.
- 34. Ltr., Maj. James C. Petersen, Base Executive, HAFB, to CG, AMC, subj.: "Operational Control...WSPG," 29 March 1949.
- Itr., Col. J. W. Sessums, Jr., Deputy Director, Directorate of Research and Development, Office, DCS/M, Hq., USAF, to CG, AMC, subj.r. "Operational Control of Air Force Activities at Condron Field, WSPG," 9 March 1949. See also Petersen Itr., cited in previous footnote, and DF, Brig. Gen. O. S. Picher, Chief, Operations Division, Directorate of Plans and Programs, Hq., USAF, to Office of Chief of Ordnance, subj.r. "Operations of AF Aircraft at Condron Field, WSPG," 9 March 1949.
- 36. See sources in above footnote.
- AFB, Va., to CO, HAFB, subj.: "Condition of Transfer,"

 2 December 1949; ltr., Col. G. G. Eddy, CG, WSPG, to CO,
 HAFB, subj.: "Request for Permanent Assignment of B-26
 Aircraft," 23 February 1950; ltr., Col. Eddy to CO, HAFB,
 subj.: "Permanent Assignment of B-26 Aircraft," 9 May 1950.
- 38. DF, Lt. Col. Eifler, Operations Officer, WSRG, to CO, HAFB, subj.: [Agreement between WSPG and HAFB], 24 July 1950. The AT-11 was to be disposed of as soon as possible, since

it was the only one of its type and thus posed a definite maintenance problem (ltr., Col. Eddy to Chief of Ordnance, subj.: "Exchange of Trainer Aircraft, T-11, for Cargo Aircraft, C-47, 6 April 1950).

- 39. 2nd ind., It. Col. H. W. Norton, Base Executive, HAFB, to CG, AMC, 10 April 1950, to basic ltr., Hq., USAF to CG, AMC, subj.: "Coordination of AF Requirements for CG, WSPG," 6 February 1950.
- 40. Ltr., Col. William H. Baynes, Deputy for Missiles, Directorate of Systems Management, ARDC Detachment 1 [and former Cmdr., HAFB], subj; [History of HAFB 1949-52], 5 April 1957.

CHAPTER II

AIR SUPPORT ON THE INTEGRATED RANGE:
INCREASING SCALE AND COMPLEXITY OF OPERATIONS, 1952 - 1957

Air support at Holloman has changed far more in the five years from 1952 to the present than in the previous five-year period. The broad types of air support offered to users of the testing range have remained essentially the same, but all or nearly all have become more varied and complex in their application. Moreover, slowly at first but then steadily gaining momentum, the indices of tests performed, hours flown, and aircraft in operation have all shot upward. The number of organizations jointly using the Holloman range has also grown; and, meanwhile, the organizational basis of air support operations both at Holloman and at its neighboring missile test center, the Army's White Sands Proving Ground, has been considerably revised in order to cope with new conditions.

Range Integration and Air Support

From the time that the Air Force and Army both became engaged in missile-testing on adjacent tracts of the New Mexico desert they have liberally shared their problems and resources in common. The role of Holloman in playing host to aircraft assigned for work at White Sands is only one example of this

sharing, which was often accomplished on an informal basis, as need arose. But as the tempo of range operations increased, it became obvious that sooner or later some definite arrangements would be needed. The first solution adopted by the Defense Department, toward the end of 1949, was to offer the Army full control over both installations; the Air Force was to continue flying planes for test support off Holloman runways, but would do so as a service organization working for the Army, with tenant status in relation to White Sands Proving Ground and an expected total of about fifty officers and enlisted men. Whether such a plan would ever have been truly practicable is open to question, but it was never actually carried out. Instead, after prolonged inter-service negotiation, a new scheme was adopted allowing the Air Force to retain Holloman as an independent test center and providing for a careful division of functions and responsibilities on the White Sands and Holloman ranges, which henceforth were to be managed as an integrated whole.

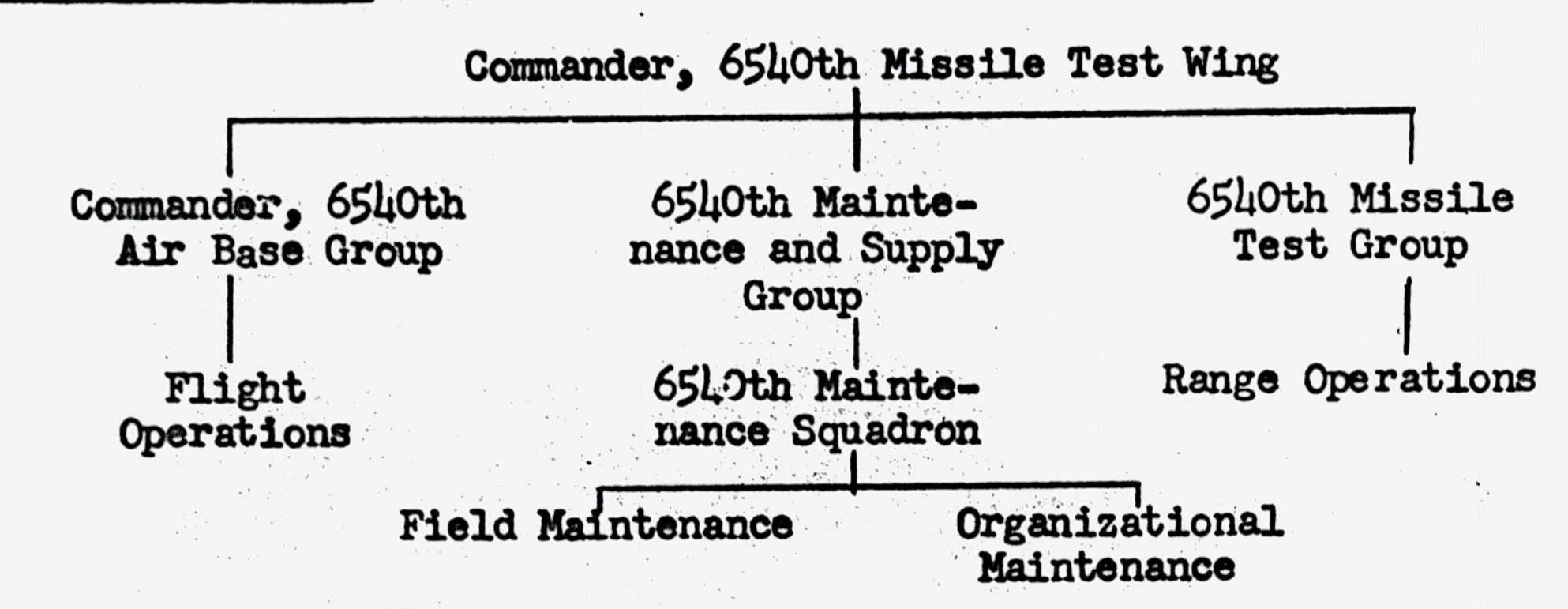
The revised plan was really carried out. It was codified in General Order Number 30, issued at the Proving Ground on 22 September 1952 and serving ever since as the fundamental law of the Integrated Range. Thereby the Army received ultimate control of the range itself, including mission scheduling and ground instrumentation, while the Air Force, logically enough, obtained command of the air—or at least of manned flight

operations and certain necessary related activities. To be exact, the Air Force was to "operate Holloman Air Force Base, air field, aircrafts [sic], weather stations, and will provide such other Air Force services as may be required for guided missiles and aircraft supporting activities for White Sands Proving Ground."

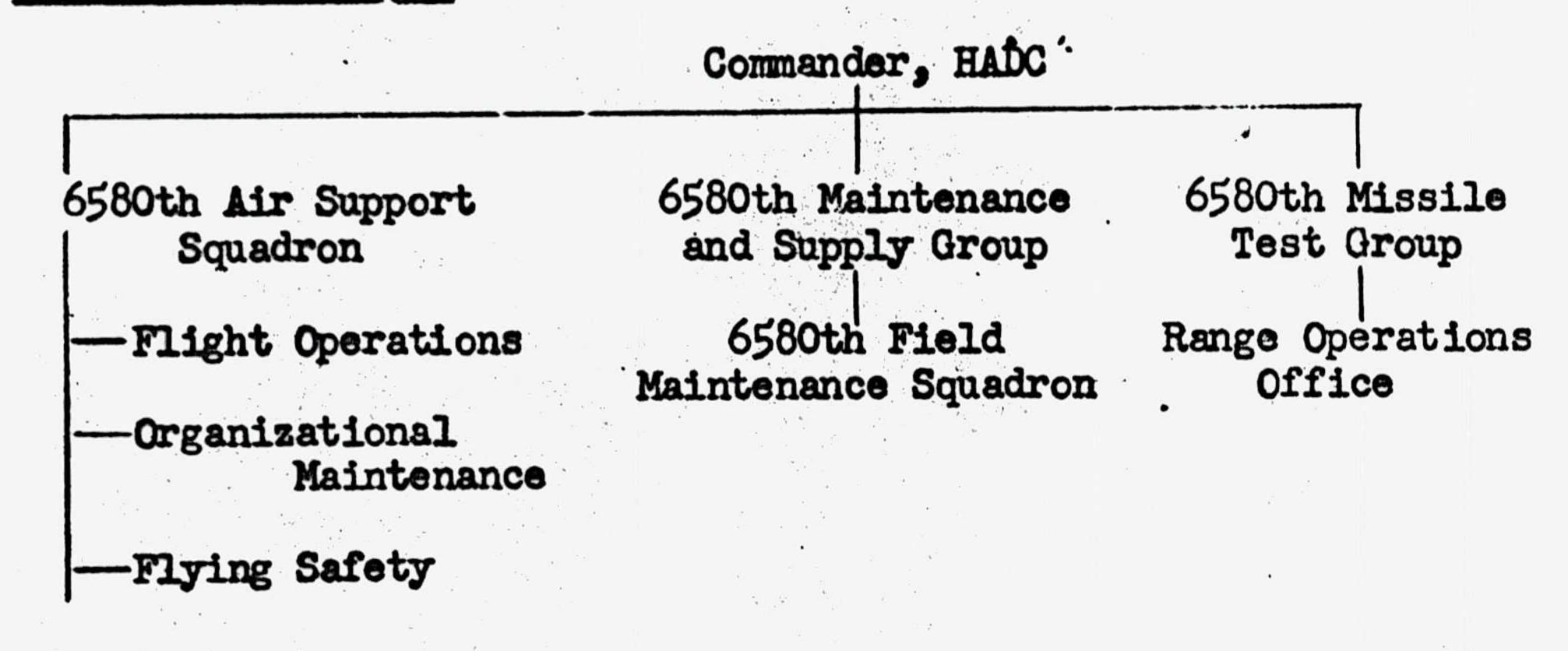
The "other Air Force services" were elaborated a little more carefully in Technical Operations Order Number 6, issued on 7

October, which also changed "air field, aircrafts" into "air fields, aircraft" and thereby included subsidiary airstrips on the range without necessarily encluding any planes. Condron Field, of course, had for some time been under the general superwision of Holloman Air Force Base, but only now did it actually become an Air Force rather than an Army installation.

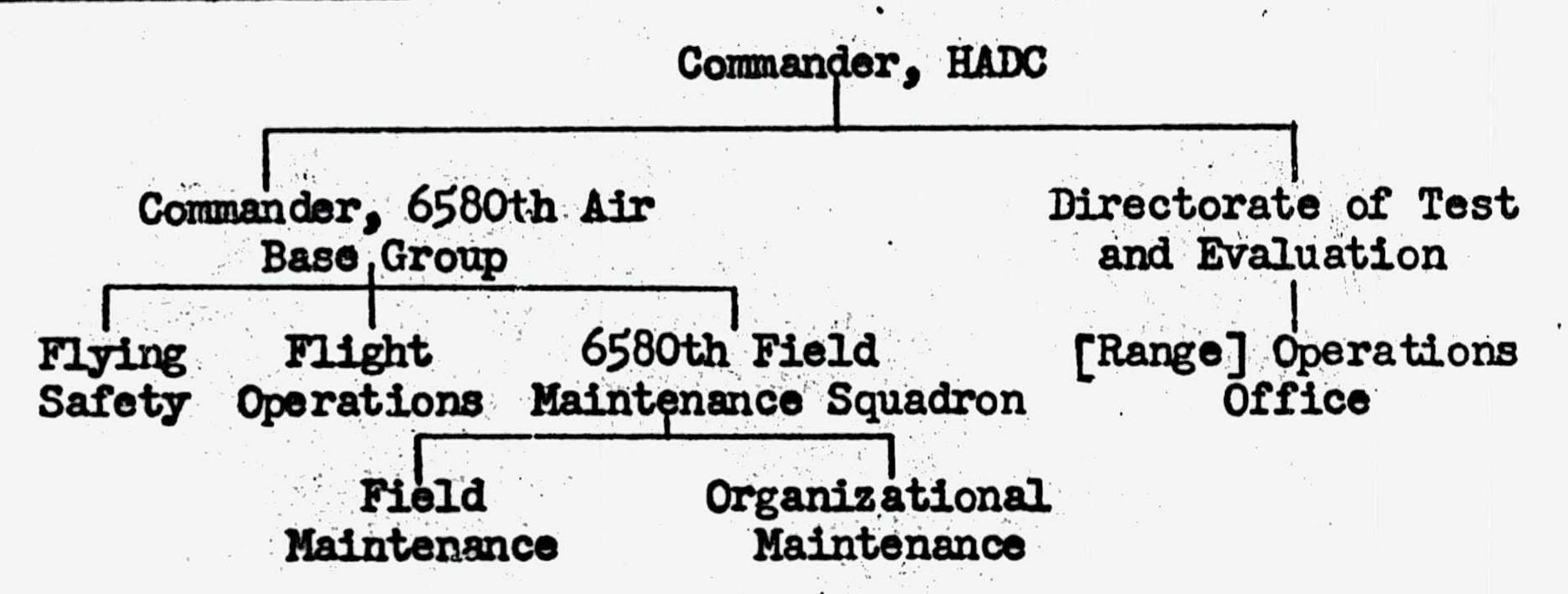
On the whole, the Air Force came out the junior partner in the process of range integration, but at least its responsibility was relatively clear-cut. It was directed to provide all classes of air support needed on the range, both for itself and for the other armed services, while at the same time it was relieved of such tasks as keeping ranchers and tourists off the remote corners of the range. There was just one qualified, though significant, exception to this definition of the Air Force mission: namely, that under General Order 30 recovery missions did not constitute, strictly speaking, a form of air support. Despite the fact that aircraft were used in spotting


and retrieving missiles after impact, this one form of flight activity was lumped together with "range control and ground recovery services" and accordingly assigned to the Army. Henceforth neither Holloman nor much less Biggs Air Force Base was to provide recovery services, and the Army created a fully "integrated" recovery unit of its own, physically based at Holloman but serving all users of the range. Or at least missile recovery was to be treated in this manner, since balloon recovery—which frequently took place off-range—was shared with the Air Force and thus constituted a partial exception to the exception.

Units, Planes, and Men: The Division of Labor in Flight Operations


Even within the framework of primary Air Force responsibility for air support on the integrated range, there were several different units—including non-Air Force tenant units—engaged in providing the services in question. First and foremost was the 6580th Air Support Squadron, which took in all base—assigned pilots and aircraft. This squadron had been created only a few months earlier, through the combination of a flight operations section that was formerly a part of Air Base Group and an organizational maintenance section that had belonged (together with field maintenance) to the 6580th Maintenance Squadron of the 6580th Maintenance and Supply Group (see chart).

Organizational Basis, at Different Periods, of Holloman Air Support Functions


As of July 1951:

As of November 1952:

As of February 1955:

Sourcer See footnote 4.

Flying safety functions were also entrusted to the Air Support Squadron, but it shared actual scheduling of air support missions with Holloman's range operations office, located in the 6580th Missile Test Group, and with the appropriate Army officials at White Sands Proving Ground. The latter technically had the last word on range scheduling matters—with the notable exception, of course, that if Holloman claimed to be unable to provide air support on a given mission there was little the Army could do about it.

Soon afterward flying safety was placed under the Deputy Chief of Staff for Operations, and later still the Air Support Squadron was renamed 6580th Operations Squadron, but the basic plan of organization was not changed until February 1955, when the Operations Squadron itself was disbanded and its functions divided among other units. The flight operations section (since renamed Flight Test Division) was moved back to Air Base Group; organizational maintenance was shifted to the 6580th Field Maintenance Squadron, which despite its misleading title was to perform both levels of maintenance on base aircraft. These arrangements bore a close resemblance to those in effect before the establishment of the Air Support Squadron. They were frankly designed to save manpower spaces, by concentrating maintenance functions in a single unit, and they have remained basically unaltered down to the present. The much-traveled flying safety

office is a different matter: in the February 1955 reorganization it moved over to become a special branch of 6580th Air Base Group, but in December 1956 it returned again to the jurisdiction of the Deputy Chief of Staff for Operations. The Holloman range operations office has been a more stable factor. Although it, and the larger Missile Test Group to which it was attached in 1952, have since then undergone their full share of the endless name changes that plague all Holloman activities, its relative place in the total plan of the Center has remained roughly the same. Currently it is the Operations and Plans Division (with Range Scheduling as a subsection) of the Directorate of Aircraft Missile Test.

Throughout these repeated changes in organization, the number of base aircraft was growing steadily. In October 1952 the Air Support Squadron possessed seventeen planes representing ten different major types. At the end of 1956 its successor, the Flight Test Division, had thirty-nine planes and eleven major types (see chart). The peak in aircraft strength had been reached in May 1956, when Holloman listed forty-seven "inventory-possessed" aircraft. To be sure, not all would be physically present at any one time. A C-47 might occasionally be sent off to Minnesota to assist north-country balloon launches, and a part of the century-series fighter detachment was normally at China Lake Naval Air Station in support of Project Sidewinder.

Aircraft and Aircraft Types: Holloman Air Development Center

Туре	Oct 1952	Dec 1953	Dec 1954	Dec 1955	Dec 1956	Jun 1957
B-17 B-25 B-26 B-29 B-17 B-50	1					
B-25	2	2	2			
B-26	3	6	5.	5	5	8
B-29	1					
B-47						2
B-50		2	3	3	3	1
C-45 C-47		3	3	3		
C-47	1	3	4	4	5	5
C-131				3	2	2
F-51	2	2			·	
F-80		1	4			2
F-86	3	4.	4	4	2	
F-89	: +		2			
F-94		r g		10	6	5
F-100				1	11	12
F-104					Y (e) (v)	1
H-5	2	1	1	v in		
H-19			1	1		
H-21						2
I-4				1		
I-5	1	1				
L-16				. 1		
L-17		1				
1-19					1	
L-20	IS .		2		2	2
T-29					1.1	
T-33	1	1	2	2	1	2
Total	rt 17	27	34	40	39	45

Note: All figures except those in the last column are from the tables of "inventory-possessed aircraft," as of the last day in each month, appearing in ARDC Reference Book. Figures in the final column were obtained from Aircraft Allocations Branch, Operations Division, DCS/O, as of 18 June 1957.

Holloman also came to have a roster of full-time duty pilots, a luxury which had been lacking (save in the tenant Drone Squadron) at least as late as June 1952. Their number was still small-as low as seven, as of 22 April 1957 -- and was barely sufficient to meet the requirements for high-performance jet support flying, a job that Lieutenant Colonel Oakley W. Baron, Chief of the Flight Test Division, was hesitant to entrust to any of the much larger number of part-time pilots holding other positions at Holloman. For the sake of flying safety, and also as a matter of operating principle, Colonel Baron was committed to the concept of a group of highly-trained, specialized test pilots who would as far as practicable fly all air support missions at Holloman. However, non-duty pilots still perform a sizeable portion of the total mission flying, especially when reciprocating-engine aircraft are used, as on balloon chase.

Although the official titles might imply a narrower function, the Air Support Squadron and its successors up to and including the present Flight Test Division actually had charge of all flying of base-assigned planes and pilots (duty or non-duty). This naturally took in countless training, logistic, and administrative flights in addition to direct mission support flying. Likely as not such flights had at least an indirect relation to the testing mission, as when planes were sent to gather up chimpanzees that had outlived their welcome at zoos around the

Laboratory to go balloon-riding or perhaps try out new seat ejection procedures. Base-assigned planes and pilots. also performed their full share of miscellaneous humanitarian flight missions, whether airlifting supplies to the flood-stricken Northwest during the Christmas holidays of 1955 or giving directions from the air to firefighters (many of them Holloman airmen and officers) in the nearby Sacramento Mountains in April 1956.

As already noted, under General Order 30, Holloman was relieved of direct responsibility for missile recovery flights. This service was entrusted instead to a Holloman-based Army unit, Detachment 3 of the 9393rd Technical Service Unit, which has recently been redesignated (for the first and only time!) as simply Detachment 3, United States Army Garrison, White Sands Proving Ground. Detachment 3 came to Holloman in October 1952, and with its original fleet of five L-19's it successfully recovered every missile fired on the range during the next five months. That record has since been spoiled, but the recovery service still ranks high for fulfillment of its assigned mission. Admittedly, it also has one advantage in that the schedule for finding missiles is not quite such a split-second affair as the schedule for firing them. Yet there are also some hard-to-find missiles that are likely never to be that require immediate recovery for technical reasons. Lockheed Aircraft Corporation, for instance, attempts to land its test vehicles on a thin nose spike and must get quickly to them before a gust of wind knocks them over and causes damage.

Detachment 3 on its part has also kept pace with the growth of range activity by increasing the size and quality of its aircraft inventory, which at the end of 1956 included eight I-19's, four I-20's, and six assorted helicopters, for a total of eighteen planes. The Moreover, while flying 15,000 hours from September 1955 to 21 January 1957 it managed to have the enviable safety record of not one reportable accident. When that record was finally broken, it was in a way that emphasized the unusual character of the detachment's operation: an Army plane was attempting to fly beneath a telephone line and unfortunately got caught.

Although conceived primarily as a missile recovery unit,

Detachment 3 has performed certain other duties as well. Indeed,
the Joint Use Agreement drawn up between Detachment 3 and
Holloman Air Development Center established an order of priorities for different types of Army flying missions. "Missile search and recovery" held first place, followed in order by tracking missions, "other missions...deemed necessary by the
Commander, Holloman Air Development Center," Army Signal Corps missions, personnel and supply airlift "within the Integrated

Range," and in last place "administrative and training flights as deemed necessary by the Commanding Officer, Detachment

III...."

Those missions "deemed necessary" by Holloman's commander have included, e.g., photo support of Air Force projects, while administrative flights have in practice included cross-country runs for the staff of the Commanding General, White Sands Proving Ground.

Detachment 3 has also flown some missions not covered even by implication in the basic directives, such as helicopter rescue of lost visitors wandering among the duties of White Sands National Monument.

There has been ready cooperation at all levels between Army aviation and the base flying organization at Holloman. The Army on occasion has offered its pilots to fly Air Force helicopters, and at other times Air Force planes and pilots have taken part (over and above their stated mission) in the basic Army task of 24 Holloman has provided air passenger transmissile recovery. portation for White Sands Proving Ground, supplementing the work done in this respect by Detachment 3; in view of the limited resources possessed by Army aviation. Holloman's assistance was almost indispensable for such purposes as carrying very important persons in and out of Condron Field. 25 In addition, simply as a tenant organization at Hc oman, Detachment 3 is both subject to overall Air Force supervision and control and automatically entitled to a broad array of standard base support services. The

Joint Use Agreement defines these services to include aviation fuel supply but not aircraft maintenance or supply of aircraft parts. The latter might be "borrowed" at times from Air Force stocks, on a strictly unofficial basis, but come normally through Army channels. The Army likewise set up its own maintenance capability at Holloman including a field maintenance unit which, unlike Holloman's 6580th Field Maintenance Squadron, does not do organizational maintenance but does take responsibility for servicing aircraft belonging to the New Mexico National Guard and to Fort Bliss, Texas. Since Fort Bliss has an aircraft detachment comparable in size to that of Detachment 3, Holloman officials have sometimes questioned the practice of performing field maintenance on its planes, noting that even though work was done by Army mechanics there was still a shortage of space and facilities in the maintenance area. When the Army pointed out that it would be both inefficient and against Army regulations to mount a full maintenance capability for no more planes than belonged to Detachment 3, Holloman gave some consideration to providing full Air Force maintenance for all Army planes regularly stationed at the local airfield. However, this was not done, and Fort Bliss continues to receive field maintenance support at Holloman. 26

For a time Holloman also received assistance from, and gave base support to, a Navy aviation unit. This was a detachment

of Utility Squadron 3, sent to Holloman from its home base in San Diego for the express purpose of providing drone target missions. Regular full-scale operations began about 1 January 1953, with the naval detachment prepared to serve Navy, Army, and Air Force missile programs though in practice working mainly for the first two. By and large, its tenancy arrangements at Holloman closely paralleled those made with the Army aviation It thus agreed to perform its own maintenance, although it performed a smaller part of the total workload at Holloman than did the Army. Periodic inspections, for instance, were accomplished by flying the plane back to San Diego. Nevertheless, from time to time assistance was informally asked and received from the Holloman maintenance shops, and there was even one Holloman facility---the aircraft washrack---that was used regularly by the Navy, although Navy personnel did the actual washing. 28

The naval aircraft inventory reached a peak of sixteen-fifteen F6F's, including drones and directors, and one administrative SNB5--in mid-1954. Just a year later, in June 1955, the Navy flew its last drone mission at Holloman. Its aviation detachment had come originally to supplement the work of still another tenant unit, the 3225th Drone Squadron of Air Proving Ground Command, and by June 1955 the latter was prepared to shoulder the entire task of drone operations on the integrated

range. Accordingly, the Utility Squadron's planes and fliers returned to San Diego, and the only naval aircraft at Holloman since that date have been on temporary duty. Among other things, Navy planes and flyers have come to fire at Drone Squadron target drones in support of Project Sparrow and Project Sidewinder.

The 3225th Drone Squadron had, of course, been present at Holloman ever since 1951. It has flown QB-17, QF-80, and Q-2 target drones for projects sponsored by all the armed services, and has also performed B-17 tracking missions for projects at White Sands Proving Graind. The latter do not form part of the squadron's primary mission, save in so far as they "directly influence future mullo flights," but have been performed to the extent that they are needed and have not interfered with drone operations. The Drone Squadron sometimes lent a T-33 to the Air Support Squadron for photographic chase, 33 and it has performed its own training and administrative flights. It provides its own airlaunch capability for the Q-2 drone, and on 24 December 1955 flew a big red B-17 over Holloman to launch 500 chocolate bars at children waiting below--a type of Air Force activity that has since been ruled out by Department of Defense directive. But the squadron has not been authorized to fly chase even on its own missions. 34

This last function-chase support-is reserved for base-assigned pilots, and Drone Squadron officers have not been

entirely happy with the limitation, feeling that on Q-2 missions, at least, their own unit would often be better qualified to provide chase support. "Unofficially," in fact, Drone Squadron pilots on a few occasions have flown safety chase of the observation-monitoring variety though not the "hot gun" variety. The latter is actually the less important of the two, for it is seldom necessary to shoot down an errant or crippled drone and there is no guarantee of success even when the maneuver is attempted; as experience has shown, a drone may plunge off-range even after it is shot at. 35 Hence the original requirement that an armed fighter be airborne throughout a QB-17 or QF-80 mullo mission was modified in October 1955 to require whot gun" coverage only for the "hot run" itself. 36 Later still, the requirement for an armed fighter to be airborne at least at firing time on all drone missions was quietly altered to permit the firing to take place even if for some reason no chase aircraft is available. 37

The Drone Squadron, too, has steadily increased its aircraft inventory, which rose from modest beginnings to twenty-seven in May 1955 (when the Utility Squadron was ready to bow out) and thirty-seven in December 1956. This last total included fifteen B-17 drones and directors; nine QF-80 drones; two B-26's for Q-2 launching; ten T-33's for both training and director use (with the QF-80); and a single I-20. Although it has a

partial maintenance capability of its own, the Squadron has made fuller use of the base shops than either the Army or the Navy tenant units. It has received help both on modification work and on major repairs, the latter including such timeconsuming operations as the reconstruction of drones shot down by missile fire. The extreme case is probably that of a QB-17 downed on 18 October 1952 which had to wait in Holloman's field maintenance shops while a complete left inner wing panel was shipped in from Albrook Air Force Base, Canal Zone. With the help of nine mechanics sent on temporary duty from Kelly Air Force Base, Texas, the drone was finally made ready to fly again exactly 362 days and 6926 maintenance manhours later. Similarly, the Drone Squadron has made regular use of Holloman supply services, both for aircraft parts and for other items. Even at a time when the Air Force assigned it the lowest supply precedence of any unit at Holloman, the base supply organization was always prepared to stretch a point in order to serve the Drone Squadron, as the latter gratefully acknowledged.

Although not "tenant" units in the usual sense, those contractor companies that have project aircraft bailed to them stand in somewhat the same relationship to Holloman Air Development Center as the Drone Squadron or Army aviation. But the terms of bailment, the use to which a bailed plane is put, and the reason why it is bailed rather than base-assigned have

varied from one case to the next. Bailment is, essentially, a device whereby a plane can be reserved for the use of a single company on a project entrusted to it. This might be done simply because the base is not prepared to maintain aircraft of the type needed, or it might be that required modifications make it virtually impossible to use the plane except on one project. Or again a plane can be bailed because it is the only one that can do a job and there is danger that if used for additional purposes it might be out of commission just when needed for its primary mission. Since the testing program at Holloman began, one or more of these conditions have been present most typically in the case of launch aircraft. At the other extreme, they almost never apply in the case of recovery aircraft, which consequently have not been bailed. Neither are bailed planes commonly used for chase purposes, although some instances do occur.

In some cases bailed planes have remained at Holloman even after they were no longer needed. This is usually because of special modifications that would be difficult and expensive to remove and yet make the plane less desirable for other possible users; hence Air Materiel Command, which controls all bailment contracts, will sometimes allow a plane to sit idly on the ramp for months on end while searching for a new user. This has happened to both E-50 and B-36 launch aircraft bailed to Bell Aircraft Corporation for its Rascal project, once they were

phased out in favor of the B-47. The B-50's were finally disposed of after remaining virtually idle for a year. The two B-36's, on the other hand, were ultimately put back to use on a new version of the B-50 (B-17)/F-80 project, in this case using a B-36 launch aircraft as director with an F-80 that takes the part of a simulated missile. The Missile Countermeasures Division then attempts to jam the guidance signals, and valuable data has been collected. Obviously this is better than having the B-36's do nothing at all, but obviously, too, a B-36 is not the most economical aircraft for the program!

Whether they were actually being used or not, it is impossible to state exactly how many planes were bailed for work at Holloman at any given time in the past; adequate records simply have not been kept. However, a careful count made in April 1957 revealed some thirty-five, which is closely comparable to the number of base-assigned planes. Like military tenant units, the bailment contractors supply their own pilots, who are often highly skilled in civilian test flying; indeed they have to be, if they are to cope with such emergencies as bringing back and landing a "hot" missile after a launch has been aborted or cancelled in the air. A pilot may jettison such a missile if the danger is too great, but many have been carefully brought back in order to save both the taxpayers' money and the time and effort that went into making

the missile. At the same time, bailed planes uniformly obtain Air Force fuel; use drag chutes repacked by base personnel; and commonly (but not always) obtain replacement parts through base supply channels. If a bailed plane is of a type not present in the base-assigned inventory, Holloman may not even attempt to keep parts on hand, while in those cases where the bailment contractor is the same company that manufactures the plane it can provide more efficient parts service than the Air Force could possibly offer.

The most obvious differences among bailment contracts concern maintenance arrangements; for, as noted in the previous chapter, the pattern varies from full contractor responsibility to full base responsibility, with combined base and contractor maintenance also possible. Nor will every plane bailed to one contractor always be maintained in the same way. Bell Aircraft Corporation once again offers a striking example: its bailed B-50's were base-maintained at the same time that its B-36's and B-47's were (and still are) contractor-maintained by private subcontractors (Convair-Fort Worth and Boeing Aircraft Company respectively). Outright contractor maintenance is the most common solution, and the easiest from an Air Force standpoint, but it is also expensive. It is expensive above all when two contractors provide maintenance capabilities for aircraft of the same type and yet do not require a great amount of flying from them. The Bell B-47's and two similar B-47 launch aircraft bailed to Radioplane Company for Project Crossbow are maintained by separate contractor organizations, but neither pair of B-47's is flown enough to make the fullest use of maintenance staff or facilities. Such a case is far more likely to arise now than in the early days of missile—testing, when relatively few planes were bailed to a mere handful of contractors.

In addition to base-assigned, tenant, and bailed aircraft, there have been occasional groups of aircraft descending at Holloman for temporary duty on behalf of outside organizations. Two instances, relating to Navy test projects, have already been mentioned. But probably the most important example of this sort has been the program started in November 1956 by the Air Force Armament Center of Air Research and Development Command. The Armament Center needed to test certain fire control systems on century-series aircraft, an assignment that could best be carried out on the Holloman range; it therefore brought pilots and planes from Eglin Air Force Base, Florida, where the Armament Center is located, and some maintenance people besides. But it relied on Holloman for photo chase, dropping of parachute targets, and certain related air support services. Hence the visitors from Florida, who kept hard at work well into the spring of 1957, not only absorbed substantial amounts of range time but placed an obvious strain on Holloman's air support capability.

In still another case one of Holloman's tenant units, the 3225th Drone Squadron, played host to a temporary influx of planes and personnel sent to New Mexico by its own higher headquarters to get ready for Project Upshot, which finally took place in April 1953. This project was a series of atomic tests in the Nevada desert, in no way related to the primary Holloman mission. However, the test program called for flying mice and monkeys through an atomic cloud in drone aircraft; and Holloman became a scene of training activities and other preparations for the drone phase of the project. Although these preparations did not call for air support of the usual type from Holloman's Air Support Squadron, they did put a strain on certain other base facilities. For one thing, there was a run on base supplies of jet fuel, compelling Holloman to line up an alternative supplier.

' -

A rather different type of flying activity by off-base aircraft—worth mentioning chiefly for its nuisance value—has been the growing use of Holloman and also Condron fields by light civilian planes owned by the mission contractor companies or chartered to fly on their behalf. In one extreme case Felix Flying Service, a private firm, went so far as to obtain a state franchise from the New Mexico Corporation Commission to act as

air carrier in and out of Holloman, intending primarily to offer the contractor companies a charter service to up-range installations. The firm claimed further that its franchise gave it "exclusive" right to make chartered flights from Holloman airfield, although this claim was naturally rejected by base officials, and in the end Felix Flying Service did not set up regular operations even on a non-exclusive basis. Continental Airlines, by contrast, was actually invited to begin scheduled passenger service from Holloman starting 1 September 1954. However, it is hoped that ultimately an improved Alamogordo municipal airfield will be able to accommodate not only Continental's airliners but also the numerous light planes used by contractor companies, which constitute a definite safety hazard when mingled with jet traffic at the same field.

Continental Airlines was invited to Holloman for the indirect assistance that its service could give to the research and development mission. In other cases aircraft have been borrowed from different installations to render direct air support. When unable to obtain a base-assigned C-131 for tracking missions, the Range Instrumentation Development Division of Integrated Range Mission, an Army unit functioning at Holloman, solved its problem by borrowing a Beechcraft all the way from Aberdeen Proving Ground, Maryland. This was made possible by a considerable stroke of luck: namely, that the plane's pilot

at Aberdeen had a hankering to go west on temporary duty. He went back east again for Christmas leaving the assignment not quite completed, but it was finished enough. 51 specially-modified B-29 with bomb bay removed was brought from Edwards Air Force Base on two separate occasions as part of Project Cherokee, sponsored by Lieutenant Colonel (now Colonel) John P. Stapp and the Aero Medical Field Laboratory. This project involved experimentation with new seat-ejection procedures, using chimpanzee subjects, and the plane in question -which had already won fame as mother aircraft to the supersonic X-1--was unusually well fitted for the task. It also posed some maintenance problems, because the last base-assigned B-29 had disappeared before its first arrival; but then maintenance problems are a fairly normal occurrence when it comes to borrowing aircraft, since a plane is not often borrowed if Holloman already has one of the same type.

In any case, borrowing began at an early stage of the Holloman testing program, and has actually been very common. During the two months of July and August 1955 Holloman was using the B-29 borrowed for Project Cherokee and another B-29 borrowed from Headquarters, Air Research and Development Command for Project Whoosh; an F-89D with firing error indicator borrowed from Air Proving Ground Command in support of the GAR-1 program; and various B-47's (another aircraft type of which

none was then present at Holloman) borrowed for two different projects and from four organizations—Air Force Special Weapons Center, New Mexico; Air Force Flight Test Center, California; Wright Air Development Center, Ohio; and Biggs Air Force Base, Texas.

In some cases borrowing has meant that the aircraft is actually flown from a "foreign" base for a particular test, taking off in time to make connection with Holloman support aircraft and returning home as soon as it is finished. This procedure eliminates the problem of maintaining borrowed aircraft, but it is not entirely efficient, and it is very unreliable if the aircraft to be borrowed is a scarce and much sought-after commodity such as the B-57 high-altitude light bomber. Holloman was instructed by higher headquarters to borrow a B-57 elsewhere in the command, when it proved impossible to assign one directly to the Center, but in April 1956 Colonel Otto R. Haney, Deputy Chief of Staff for Operations, explained that this procedure simply had not worked. In fact it

support cannot be provided if the B-57 is to be flown from a Base other than Holloman. Thirteen consecutive missions were attempted without completing one test operation. Difficulties in transporting and loading the parachutes at locations removed from Holloman, project launch equipment difficulties, communications, changes, 'holds,' slides in the range schedule and the unknown status of the B-57, 55 all argue against the efficiency of such a set up.

Admittedly, this is an extreme case, and under normal circumstances

borrowing (at least when the plane operates from Holloman) probably offers fewer difficulties than adding an entirely new type to the base inventory. However, the mere fact that Holloman has been forced to attempt expedients such as those described by Colonel Haney is evidence of the changing tempo of air support operations.

Growing Scale and Complexity of Operations

This change in tempo involved both quantity of missions flown and, more elaborate requirements in all the basic categories of air support services. As the mere increase in number of aircraft will indicate, flight operations have now become a major rather than a minor part of total base activity. The same trend is reflected in the total hours flown by base-assigned aircraft, rising from 5571 in fiscal year 1953 to 7896 in 1954, 10,119 in 1955, 11,816 in 1956 and 5,051 in the first half of fiscal 1957. Hours directly labelled in each case as test support flying were 3930, 4671, 6204 and 6412, but naturally much non-test support flying was also closely related to mission requirements? Moreover, the apparent decline in flying in July-December 1956 was both temporary and somewhat misleading. It reflects among other things a rash of difficulties that beset air support operations at about that time,

all of which will be considered in the next chapter, but even so the Flight Test Division reported at the end of 1956 that "traffic at this base, especially jet traffic, has increased to the point where the field soccasionally saturated." In the following March operations at Holloman set a new record of 259 major test missions completed, the majority requiring some kind of air support; in May 1957 another record was set when total flying hours for the month reached 1300, including over 600 hours of primary mission jet time.

This increase in number of missions required, among other things, a greater proficiency in timing. Support aircraft would most likely climb to mission altitude during the preceding mission, then land and refuel during the following mission so that they could be ready to fly again as soon as possible; and a delay at any point could well throw off the test schedule for the rest of the day. 59 The scheduling function itself likewise required more careful attention. Originally representatives of the Air Force, Army, and Navy worked out a schedule for joint use of the Integrated Range in a weekly meeting and, though changes repeatedly had to be made after the schedule was drawn up, this posed no great problem as long as the number of missions was not excessive and there was ample range time to go around. However, as the range became saturated, these constant changes led to serious inefficiency; it was especially

cancellations or just plain confusion. Hence effective 13 July 1956 a new system was adopted, with a daily conference at 1100 hours by intercom network taking the place of the weekly personto-person meetings. Last-minute problems still occur, but the percentage of scheduled tests actually completed has risen. A further innovation is that Holloman now has only one representative at scheduling sessions, whereas formerly the Air Force range scheduling officer might be accompanied by observers or advisers from such units as the Drone Squadron and Flight Test Division. These units now must make known their exact capabilities to the Air Force scheduling officer prior to the daily session, so that he can speak in their behalf.

The quantitative increase in air operations has been reflected further in expansion of physical facilities. New hangars have been built, including one for the Drone Squadron that was finished December 1956. Similarly, a program of lengthening and strengthening the runways was completed in the spring of 1955. This was the first major work done on the runways since World War II and left Holloman fairly well equipped: of the four basic runways, each slightly over 8000 feet, two were lengthened to over 12,000. The change was especially helpful to the Drone Squadron, whose operations require extra room to move around and thus had been sorely

hampered by the previous dimensions. Longer runways were also necessary for maximum performance of large aircraft such as the However, as these examples clearly suggest, the lengthening of runways and similar improvements have been designed to meet qualitative changes in air support as well as the sheer quantity of flying missions. These qualitative changes result both from the ever greater variety of projects with air support requirements -- for seldom do any two projects require exactly the same performance from support aircraft -- and from the normal progress within any one project after it begins development. Such factors are difficult to measure, but a good indication can be found in the array of aircraft types (see chart), which have not increased appreciably in number since 1952 but have changed constantly in the direction of newer, higher-performance aircraft.

The change in aircraft types becomes even clearer if one considers the category of bailed aircraft, including those that are not technically bailed but are especially assigned to a contractor on some other basis and treated as bailed. Planes of the more advanced types usually make their appearance somewhat faster in the contractor than in the base-assigned inventory. In the bomber class, for instance, the base inventory from 1952 to 1957 was stripped of B-17's and B-29's while adding B-50's and B-47's, but these two types had both been

bailed earlier to Bell Aircraft Corporation (B-50's since 1950, B-47's starting in August 1954). Bell likewise received two massive B-36's, which the Center itself has never had. for the B-57, this was a type that Holloman was seeking for its own inventory as early as November 1954, but command headquarters did nothing until September 1956, when it could offer only the B-57A model that Holloman did not want because of expected maintenance difficulties and therefore refused to take. the contractors, however, Hughes Aircraft Company brought in a bailed B-57 even before the command made its unsatisfactory offer to Holloman, and since then Northrop Aircraft Incorporated has acquired a bailed B-57E. Similarly, in the fighter category F-101's were bailed to McDonnell Aircraft Corporation and F-102's assigned to both Hughes and Convair while the Flight Test Division was still limited to F-100's.

The appearance of Bell's B-36's and B-47's represente, specifically, a shift from preliminary work (e.g., the lighter Shrike prototype of the Rascal missile) to actual launches with a full-scale Rascal from planes that were intended to serve as operational carriers. In the field of launch-type operations there was also a relative increase in the dropping of parachute targets, a trend due in part to the inability of conventional target drones to reach sufficient altitude. This was one reason why the B-57, with a capability for both high altitude and slow

airspeed, was ardently desired at Holloman. Hughes used a project B-57 to drop high-altitude parachute targets for its Falcon missile, but the Flight Test Division had to use fighter aircraft for tasks of this nature. F-89's, F-94's, and F-100's were all modified to drop the high-altitude Pogo-Lo parachute target specially developed for the Navy's Talos program at White Sands. Indeed "Pogo drops" became a major facet of Holloman's total support for White Sands Proving Ground, at the same time that White Sands projects in general were steadily increasing their demands on Holloman for air support.

A further change in the general area of launch operations was the relative increase in launching of fighter missiles such as Falcon as compared with bombardment missiles like Rascal. And just as the Rascal program finally began to launch from the B-36 and B-47, the Falcon program, which for a while accounted for over half the total Air Force tests at Holloman, had to keep up with the development of the new fighters from which Falcons would be fired operationally. The F-100 and F-102 were brought into the picture in 1956, and separate programs were established (known as the F-101 and F-102 Projects) for perfecting the fire control systems for those same aircraft when used not only with Falcon but also with other fighter missiles. In all these cases the basic

launch aircraft were bailed to contractors, but Holloman was still called on to provide other types of air support. The F-101 Project received least support, simply because Holloman had no plane that could keep up with the F-101 when the latter was flown at or near maximum performance. Therefore the launch plane itself provided photographic coverage, by means of an array of cameras externally mounted; Holloman at most would send up some other jet to stand by for a possible post-firing damage inspection, in which case the F-101 would have to slow down at least enough to be looked at. The F-101 Project also brought with it some unusual safety problems. The first mission involving a triple salvo of Falcons, attempted 13
September 1956, resulted in a collision of missiles just forty feet shead of the aircraft, which very luckily escaped harm.

In those instances where chase support was actually provided—photographic, armed, or otherwise—there were farreaching changes both in aircraft types and in the exact uses to which they were put. The last non-jet fighter chase aircraft, an F-51, disappeared in 1954, but even in the jet field itself the basic types of chase aircraft have been constantly changing. The jet chase "team" in 1952-54 consisted of the F-80 (or its trainer version, T-33), F-86, and F-89, of which the latter appeared rather late and never assumed a very large role.

1955 saw a conscious specialization in F-94's, and 1956 in the

F-100. The coming of the latter type was, of course, the really basic innovation, signifying that test operations were now shifting from subsonic to supersonic. The very first Holloman F-100 arrived early in 1955, primarily to provide chase support for the recently-established F-102 Project. But for some time it did not do much flying, since (among other things) as late as December of that year Holloman still did not possess a proved maintenance capability for it. Only in 1956 did the F-100 really come into its own.

To be sure, even the most supersonic of projects may require subsonic chase aircraft for some purposes. The Lockheed X-7 is a supersonic ramjet test vehicle capable of such high speeds that no form of chase is even attempted during the main part of its flight. It does require chase support up to and including the launch phase, but a supersonic fighter would actually be too fast to stay with the B-50 launch aircraft. 75 Nevertheless, an ever greater number of missions have called for supersonic chase, which by definition must be performed by supersonic aircraft. Slower planes can at best offer an inefficient substitute, for instance attempting by difficult maneuvers to intercept a supersonic mission at just the right moment for photographic coverage of a particular phase. Such techniques are not always reliable, for obvious reasons. Not only this, but higher speed was only one of the characteristics for which century-series aircraft were

needed. High-eltitude capability was also essential, and the F-100 was the first fighter assigned at Holloman with a normal ceiling above 50,000 feet. Even if subsonic aircraft could sometimes manage to do the work of faster types, there was no conceivable way in which a plane with 45,000-foot ceiling could imitate the performance needed to fly at 50,000.

The F-100 still was not the best solution for all Holloman's chase requirements, for the ideal is usually to chase a plane with another plane of the same type. However, Holloman has never had the physical or human resources to maintain and fly the perfect aircraft for every type of mission, and thus settled on the F-100 as the best all-around choice. Its most glaring limitations have been in photographic work, since only the F-100F trainer model has two seats. In standard, one-seat models a pilot obviously cannot perform his own primary function safely and at the same time take adequate pictures with a hand camera, although this feat has been attempted by Holloman pilots. In order to escape this difficulty, the Center decided to mount cameras in the noses of F-100 aircraft, which was finally accomplished in December 1956, after many delays and still on a The new procedure proved excellent for some projects, e.g., the Hughes Falcon program, which seeks to photograph a missile in its course after launching and can now do so easily by following after in an F-100. On the other hand, nose

photography is not very satisfactory for catching an actual launch, when the missile or test vehicle normally drops away sharply from the launch aircraft before setting out on its appointed course. This is still another reason why the Lockheed K-7 program, which requires photographic coverage of the launch but not of the subsequent flight, does not find the F-100 entirely suitable. For launch photography as well as for covering the launch aircraft during its climb to position, Lockheed much prefers the T-33. But it will also settle for the two-seated F-94, which at the start of 1957 continued to play a major role in photographic if not all other forms of chase.

The F-100 is also unsatisfactory for chasing an F-101, for the reasons already suggested. It is at least limited in its usefulness for high-altitude parachute drops, although the latter is not strictly a chase function; and still other limitations could be described. But at least the F-100 is more satisfactory than any present alternative, and it will remain the basic chase aircraft until outdistanced by the steadily advancing requirements of the testing program. Then it will go the way of the F-80, F-86, and other earlier types, to be replaced by either the F-101 or the F-104. The first F-104 was supposed to arrive in May 1957 in support of Project Sidewinder. It did not show up on time, but the first group

of Holloman maintenance people had already completed a factory training course on the F-104 by 1 April. This was one case in which the base inventory was obtaining an advanced type sooner than any of the contractor companies.

In the preceding discussion nothing has been said about balloon chase, whose requirements are so different from ordinary chase support that they have little or no bearing on any consideration of the pros and cons of F-100 and other jet fighter aircraft. Major David G. Simons, Chief of Holloman's Space Biology Laboratory and a leading consumer of research balloons, has suggested that a T-33 could be very helpful in ballcon work because of its ability to go up to and over cloud formations, and in actual fact both T-33 and F-89 jet aircraft have been used for balloon chase in Minnesota though not at Holloman. Even so, there have been changes in balloon chase operations at Holloman since 1952. One change is the passing of the B-17, which was once standard equipment for the tracking and recovery of balloons, but which fell prey to an Air Forcewide move to gather up the remaining examples of this famous type and modify them for drone operations. The B-17 has been replaced chiefly by C-47's and L-20's-the former for longdistance flights, the latter for short flights and sometimes also for monitoring the ascent of cross-country balloons.

For both chase and possible emergency recovery or rescue

on manned balloon flights the helicopter also comes into play, and it is hardly surprising that helicopters, too, have undergone an evolution toward larger and newer types. The H-5 has been replaced by the H-19, and it in turn by the H-21, which was urgently requested because of its ability to carry heavier loads and reach higher altitudes in the surrounding mountains. The fact that one of Holloman's two H-19's was wrecked in the latter part of 1956 helped speed the transition to a newer type. Needless to say, Holloman has used its helicopters for a wide variety of purposes, test and non-test, in addition to balloon missions. And if one is needed for a balloon ascent on the plains of Minnesota, it will be borrowed from a local air base rather than brought all the way from New Mexico.

One of the most striking developments since 1952 has been in the field of captive flight testing. The sub-gravity studies directed by Captain Grover J. Schack of the Aero Medical Field Laboratory bear little resemblance to captive flight tests of the conventional type, but that is essentially what they are—with both aircraft components and people as the subjects tested. Primarily, this is a biophysical research program designed to study the effects of zero gravity on human beings. It entails flying an aircraft in a high-speed ballistic trajectory so that the normal pull of the earth's gravitation is momentarily overcome, and originally an F-89 was used. When the project

aircraft crashed, the studies were resumed with an F-94C. The latter could be counted on to fly about thirty seconds in a zero-gravity trajectory but, unfortunately, odd things happened to the plane under such extreme operating conditions. Oil pressure kept falling to zero, hydraulic fluid leaked out, and so forth. These difficulties slowed down the program, but they were finally brought under control or, as in the case of collapsing oil pressure, shown to be of no significance during the brief period that a sub-gravity run lasted. Even so, the capability of the F-94 is limited, and Captain Schack therefore hopes to shift over ultimately to century-series aircraft. The F-100 could give a sixty-second trajectory, although for subgravity studies even more than for launch photography the twoseat F-100F is essential; the F-104, better still, would offer eighty-two seconds. 82

There were also novel requirements in the tracking function.

The Army's Hawk Project came forth with a requirement for tracking missions at 4000 feet measured from sea level, something that could not possibly be done at Holloman (altitude 4094 feet) but could just barely be accomplished in the vicinity of Condron Field (altitude 3930 feet), provided Air Force regulations against flying below 500 feet above terrain were not merely stretched but waived completely. Since this coincided with other special requirements for missions below 500 feet—e.g., to give

photo coverage for ground launching of the Matador missile—
permission to make exceptions was granted by Air Research and
Development Command on 18 January 1957. (Later still, the
Hawk Project began actual launches against drone targets at
similar altitude. (Later still) Tracking missions were also the ones
chiefly benefited by a relaxation of weather restrictions on
test support flying. The Flight Test Divisions's Standard
Operating Procedure 25 was revised provisionally on 9 April
1957 and definitely on 17 May to permit them to be conducted
both in and above an overcast, whereas other test missions
were still normally forbidden within an overcast and were
allowed above one subject to somewhat stricter limitations.

A refinement on the tracking function that has gained in importance over the last few years has been the use of a monitoring aircraft to receive and analyze rather than simply to reflect signals. Development of the Crossbow missile system, which aims to seek out and destroy radar installations, was hindered by guidance irregularities that project officers suspected were due to stray radiation from off-range sources. But this hypothesis could not be tested until, after some delays, a specially equipped B-25 was sent aloft in December 1954 as a frequency monitoring aircraft. The B-25 confirmed the presence of stray radiation and thereby enabled the project not only to cope with this one difficulty but to isolate still other

irregularities that could not be accounted for simply on the 86 hasis of stray radiation.

Whether tracking is of the active or passive variety, the most elaborate missions are currently performed by C-131 "test-bed" or "flying laboratory" aircraft. The first C-131's were acquired in 1955, one for the White Sands Signal Corps Agency and another for Holloman's own Missile Countermeasures Division, which had it specially modified for aerial reconnaissance and jamming of missile guidance signals. At the end of 1956, a T-29, essentially similar to the C-131, was brought in for use in the Army Vulnerability Program. C-131's have presented one awkward problem in that they are just too big and comfortable and so are highly preferred for cross-country flights. Command headquarters in the summer of 1955 became alarmed over their use for such purposes, not so much because the Holloman mission was suffering-the planes in question still had not been fully modified for test use at that time--but simply for fear of unfavorable reaction in Congress. As one Holloman officer expressed it, C-131's had landed at various bases with low rank on board and the criticism has come from General Officers of other Commands who have been unsuccessful in getting VC-131's.... Hence a ruling was laid down to the effect that C-131's should not normally be flown except to other Air Research and Development Command installations. This did not quite end the Galble problem, since a later reproof was issued by Center headquarters as a result of a Calbeing used to carry morale flights and showtime troupes in and out of Burbank, California, in apparent violation of Center policy.

However, there were also some far more serious problems faced by the air support function at Holloman, notably in the course of calendar year 1956. For a while these problems attained almost crisis stature, and they must be examined in more detail in the following chapter.

CHAPTER II

- Historical Branch, HADC, Integration of the Holloman-White Sands Ranges 1947-1952 (April 1957); interview, Col. William H. Baynes, Deputy for Missiles, Directorate of Systems Management, ARDC Detachment 1, Wright-Patterson AFB [and former Cmdr., HAFB), by Dr. David Bushnell, HADC historian, 5 April 1957.
- 2. Technical Operations Order 6 is reproduced as Appendix A.
- 3. Ltr., Col. Don R. Ostrander, Cmdr., HAFB, to CG, 1800th AACS Wing, Tinker AFB, subj.: "Control Tower Operations at Condron Field, New Mexico," 10 October 1952.
- Organization charts, in M & O Division, HADC; Comptroller, HAFB, "Organization and Functions," April 1952; Historical Report, Holloman Air Development Center, 1 September 1952 - 31 December 1952, p. 17, and organization chart in annex to same; interview, Maj. Archer W. Kinny, Jr., Asst. Dep. Dir. of Aircraft Missile Test, by Dr. Bushnell, 19 March 1957; The Historical Report cites documentary evidence that the Air Support Squadron was org nized 1 November 1952, but it already existed full-grown according to the April 1952 Organization and Functions book. Very possibly it had been set up on a provisional basis and obtained final authorization only as of 1 November. The organization existing prior to the Air Support Squadron--with flight operations under Air Base Group and all maintenance in a single unit--had been in effect at least as far back as April 1951, when the base belonged to Air Materiel Command (Organization chart, April 1951, in M & O Division, DCS/O).
- 5. DCS/C, HADC, "Organization and Functions," June 1953.
- 6. "Historical Data on HAFB," photostat table, no date, in M & O Division.
- 7. M& O Division, "Organization & Functions Chart Book,"
 1 March 1955 and later supplements; telephone interview,
 Mr. James O. Rogers, Asst. Chief, M& O Division, by Dr.
 Bushnell, 8 May 1957.
- 8. ARDC Reference Book, May 1956. Other peaks might be given, depending on the system for counting, but none

- would be greatly different.
- 9. Cf. Operations Division, DCS/O, "Historical Data...l July-31 August 1955."
- 10. Flight Test Division, "Historical Data...l July-30 September 1956."
- 11. Holloman AFB Reference Book, June 1952, p. 17a.
- DF, Lt. Col. Oakley W. Baron, Chief, Flight Test Division, to Cmdr., HAFB, and Chief of Staff, HADC, subj.: "Flight Test Direction," 17 August 1956; interview, Maj. Kinny by Dr. Bushnell, 19 March 1957; interview, Col. Baron by Dr. Bushnell, 22 April 1957; interview, Capt. Norbert D. LaVally, Chief, Technical Evaluation Air Defense Missile Branch, by Dr. Bushnell, 5 June 1957.
- 13. Interview, Capt. Drusy P. Parks, Administrative Officer, Aero Medical Field Laboratory, by Dr. Bushnell, 30 April 1957.
- 14. Flight Operations Branch, "Historical Data...l November-31 December 1955"; Flight Test Division, "Historical Data, 1 April 30 June 1956."
- 15. "History of Activities, White Sands Proving Ground 31 December 1952... 30 June 1953," pp. 59-60, citing an interview on 16 March 1953 with the head of the Detachment. The string of successful recovery missions may very well have extended beyond the period covered by the interview.
- 16. Interview, Eugene E. Crowther, Test Director, Lockheed Aircraft Corporation, by Dr. Bushnell, 2 April 1957.
- 17. DCS/C, HADC, Stat Brief, 31 December 1956.
- 18. Interview, Capt. Robert L. Hurd, Chief, Army Aviation Branch, by Dr. Bushnell, 25 April 1957.
- 19. See Appendix B for the full Agreement.
- 20. Operations Division, "Historical Data. ... 1 January-31 March 1956."
- 21. Interview, Capt. Hurd by Dr. Bushnell, 25 April 1957.
- 22. Cf. Alamogordo Daily News, 15 April 1957.

- 23. Ltr., Col. Otto R. Haney, DCS/O, to CG, WSPG, subject Army Helicopter Pilots, 29 August 1956.
- 24. Interview, Capt. Jack H. Patterson, Flying Safety Officer and helicopter pilot, HADC, by Dr. Bushnell, 19 April 1957.
- -- 25. Cf. Operations Division, "Historical Data ... 1 July-31 August 1955."
 - 26. Interview, Capt. Hurd by Dr. Bushnell, 25 April 1957; ltr., Col. Clarence L. Elder, DCS/O, to CG, WSPG, subj.: "Aircraft Requirements and Operations of Detachment No. 3, 9393rd Technical Service Unit (Ordnance)," 12 December 1955; DF, Col. Thomas C. Kelly, Cmdr., HAFB, to DCS/O, subj.: "Joint Use Agreement for Maintenance of Army Aircraft," 23 August 1956.
 - 27. See Joint Use Agreement, Appendix C.
 - 28. Interviews, Mr. William Stevens, Aircraft Allocations Officer, DCS/O, by Dr. Bushnell, 25 March and 25 April 1957.
 - 29. DCS/C, Stat Brief, 30 June and 31 July 1954.
 - 30. 3225th Drone Sq., "History ... 1 January to 30 June 1955," p. 21.
 - 31. 3225th Drone Sq., "History ... 1 July to 31 December 1955," p. 3.
 - 22. 2nd ind., Col. George M. Whitenack III, Cmdr., 3225th Drone Sq., to Cmdr., HADC, 30 August 1956, to basic 1tr., Hq., WSPG, subjer "Nike B Night Tracking Mission."
 - 33. DCS/O, HADC, staff study: "Requirements for High Altitude, High Performance Aircraft at HADC," 26 January 1953.
 - Interview, Major William W. Gray, Jr., Capt. Allan H. Hoover, and other Drone Squadron officers and enlisted men, by Dr. Bushnell, 27 March 1957; telephone interview, Col. Dean D. Conard, Cmdr., 3225th Drone Sq., by Dr. Bushnell, 10 May 1957. On the subject of chocolate bars see 3225th Drone Sq., "History ... 1 July to 31 December 1955," p. 17, and for later policy on such matters, TWI, Hq., ARDC, to Hq., HADC, subj.: [Holiday Stunt Flying], 4 October 1956.

- Interview, Major Gray, Capt. Hoover, et al., by Dr. Bushnell, 27 March 1957; 3225th Drone Sq., "History ... 1 July to 31 December 1955, pp. 21-22, and "History ... 1 January to 30 June 1956," p. 18.
- 36. Memo of telephone conference, DCS/O, HADC, with Hq., ARDC, subj.: "Aircraft Requirements at HADC," 10 December 1955.
- 37. Interview, Maj. Gray, Capt. Hoover, et al., by Dr. Bushnell, 27 March 1957. This last procedure is still to be regarded, however, as exceptional. For the basic operating procedure on safety coverage of drone missions, see Appendix D.
- 38. DCS/C, Stat Brief, 31 May 1955 and 31 December 1956; telephone interview, Col. Conard by Dr. Bushnell, 10 May 1957.
- 39. 6580th Maintenance and Supply Group, "Historical Data ... 1 May thru 30 June 1953" and "Historical Data ... 1 September thru 30 October 1953." On modification work, cf. 3225th Drone Sq., "History ... 1 January to 30 June 1954," appendix C.
- 40. 3225th Drone Sq., "History ... 1 July to 31 December 1954," pp. 37-38.
- Haintenance Sq., to DCS/O, subj.: "B-50, S/N 111 (Bell),"
 9 March 1956; Missile Countermeasures Division, "Historical
 Data ... 1 October December 1956." See above, p.9, for
 the B-17/F-80 program.
- 42. See Appendix E for the list made by Aircraft Allocations Branch, Operations Division, DCS/O.
- 43. Interview, Mr. Crowther by Dr. Bushnell, 2 April 1957.
- 14. DCS/O staff study: "Report on Aircraft Maintenance Manpower Requirements at HADC," n.d.; interview, Maj. Kinny by Dr. Bushnell, 19 March 1957.
- 45. Operations Division, "Historical Data, 1 April 1956 30 Ser ember 1956;" telephone interview, Mr. John Tillotson, Assistant Chief of Maintenance, 6580th Field Maintenance Sq., by Dr. Bushnell, 24 April 1957.
- 46. Operations Division, "Historical Data ... 1 October 1956 thru 31 December 1956."

- 47. Telephone interview, Maj. Kinny by Dr. Bushnell, 19 March 1957.
- 48. 6580th Maintenance and Supply Group, "Historical Data ... 1 September thru 30 October 1952;" 3225th Drone Sq., "History ... 1 January to 30 June 1953," p. 9; interview, Maj. Gray, Capt. Hoover, et al., by Dr. Bushnell, 27 March 1957; interview, It. James M. Shoemaker, Historical Officer, 3225th Drone Sq., by Dr. Bushnell, 20 March 1957.
- 49. Capt. Jacob J. Quintis, Chief, Operations and Training Branch, Operations Division, DCS/0, "Study on Light and Civil Aircraft Operation at HADC," rough draft as of March 1957.
- 50. Alamogordo News, 2 September 1954; Quintis, "Study on Light and Civil Aircraft Operation."
- Interview, Dr. Anthony J. Wilk, Chief, Multisystems Application Branch, Range Instrumentation Development Division, IRM, by Dr. Bushnell, 9 April 1957.
- 52. Interview, Col. John P. Stapp, Chief, Aero Medical Field Laboratory, HADC, by Dr. Bushnell, 30 April 1957.
- 53. Operations Division, "Historical Data ... I July 31 August 1955."
- 54. On two separate occasions in May 1956 a B-47 took off from the Boeing plant in far-away Wichita, Kansas, with a Crossbow missile for actual launching on the Holloman range (GAM-67 Branch, HADC, Test Report 11, 5 June 1956). This appears to set some kind of distance record for a Holloman launch mission, but it is a rather special case since the B-47 was being modified by Boeing prior to assignment (bailed) to Radioplane Company, the Crossbow contractor, at Holloman. Hence the plane was "borrowed" not only to provide needed project data but to demonstrate in actual testing whether the modifications were acceptable.
- 55. Ltr., Col. Haney to Cmdr., AFFTC, subjer "B-57 Aircraft Support," 24 April 1956.
- 56. HADC Reference Book, passim.
- 57. Flight Test Division, "Historical Data ... 1 October 31 December 1956."

- Operations and Plans Division, Dir. of Aircraft Missile Test, "Historical Data ... I January 31 March 1957; Operations and Plans Division, Daily Range Schedule, March 1957; draft of citation honoring Maj. Freddy L. Steadman, Aircraft Maintenance Officer, prepared in Inspector General's Office, HADC, May 1957.
- 59. It. Col. Anthony J. Mony, Operations Research Office, "Report on Air Support Operations," 1955, p. 2.
- 60. Operations and Plans Division, "Historical Data ... I July 30 September 1956;" telephone interview, Mr. Ralph Kron, Frequency Coordinator, Operations and Plans Division, by Dr. Bushnell, 19 June 1957.
- 61. Interview, Maj. Gray, Capt. Hoover, et al., by Dr. Bushnell, 27 March 1957.
- 62. Data cards in Real Estate Section, Installations Division.
- 63. Cf. ltr., Col. Don R. Ostrander, Cmdr., HADC, to Lt. Gen. Earle E. Partricge, Cmdr., ARDC, subj. [Monthly Report on Activities], 20 November 1952, mentioning the need for extra safety precautions in drone operations.
- 64. History of Holloman Air Development Center, 1 January 1953 30 June 1953, p. 32.
- 65. See Appendix F for a summary of air support requirements by projects.
- 66. DCS/C, Stat Brief, passim; MX 776 Project, HADC, "Monthly Historical Report, August 1954." The latter indicates that the first B-47 bailed to Bell arrived in August 1954--whereas Stat Brief does not begin to list it until the next February. This illustrates the difficulty of finding reliable data on bailed aircraft.
- 67. Itr., Col. Richard C. Gibson, DCS/O, to Cmdr., ARDC, subj.:

 "Support Problems for B-57 Aircraft," 22 October 1956.

 This letter is reproduced as Appendix G.
- 68. It. Col. Mony, "Report on Air Support Operations," Tab K; list of bailed sircraft, in Appendix E to this volume. The Convair F-102's technically are not bailed but rather "conditionally accepted" by the Air Force and turned over to the company to be used and maintained as if bailed. (Telephone interview, Mr. Lawrence V. Overell, Contract

Specialist, Alamogordo Air Procurement Office, by Dr. Bushnell, 18 June 1957.) Similar arrangements have been made in other cases too, but available data give no indication.

- 69. Holloman Air Development Center, Semiannual History

 I July 31. December 1954, p. 75.
- 70. Ltr., Col. Haney to Cmdr., ARDC, subj.: "Request for lireraft," 26 January 1956.
- 71. It. Col. Mony, "Report on Air Support Operations," Tab K; ltr., Col. Gibson to Cmdr., ARDC, subj.: "F-100C Aircraft Support for Pogo-Lo Target Development," 3.0ctober 1956, with 2nd ind., Col. Gibson to CO, U. S. Naval Ordnance Missile Test Facility, WSPG, 26 October 1956; interview, Maj. Kinny by Dr. Bushnell, 19 March 1957.
- 72. Falcon Branch, "Historical Data ... 1 July 30 September 1956" and "Historical Data ... 1 October 31 December 1956;" interview, Major Kinny by Dr. Bushnell, 19 March 1957.
- 73. F-101 Branch, "Historical Data ... 1 January 31 March 1957," appendix "Falcon Kill Probability;" interview, Capt. Harley L. Grimm, Chief, F-101 Branch, by Dr. Bushnell, 10 May 1957.
- 74. ARDC Reference Book, passim; telecon with Hq., ARDC, subj.: "Aircraft Requirements at HADC," 10 December 1955.
- 75. DCS/O, HADC Aircraft Requirements, Two & One Half Year Forecast, I July 1956, p. E 55; interview, Capt. Patterson by Dr. Bushnell, 7 May 1956.
- 76. Major Raymond C. Latham, Acting Chief, Flying Safety Branch, Hq., ARDC, "Staff Visit Report [on HADC], 8-16 May 1956."
- 77. Ibid.; DF, Col. Haney to Lt. Col. Louis W. Tribbett, Chief, Missile Test Stand Division, subj.: "Report on Camera Modification, F-100 Aircraft," 13 July 1956; Documentary Photographic Branch, "Historical Data ... 1 October 31 December 1956."
- 78. Interview, Maj. Kinny by Dr. Bushnell, 19 March 1957;

- interview, Mr. Crowther by Dr. Bushnell, 2 April 1957; interview, Mr. Edward E. Rich, Optical Physicist, Hughes Research and Development Laboratories, and other Hughes personnel, by Dr. Bushnell, 3 April 1957.
- 79. Ltr., Col. Gibson to Cmdr., ARDC, subj.: "Request for F-104B Type Aircraft," 31 January 1957; memo for record, Capt. Arthur G. Miller, Staff Maintenance Officer, DCS/M, subj.: [F-104 Maintenance], 1 April 1957.
- 80. Ltr., Col. Elder to Cmdr., ARDC, subj.: "HADC Projected Aircraft Inventory," 4 October 1955; interviews, Capt. Druey Parks, Administrative Officer, Aero Medical Field Laboratory, by Dr. Bushnell, 30 April and 16 May 1957; interview, Maj. David G. Simons, Chief, Space Biology Laboratory, by Dr. Bushnell, 14 May 1957.
- 81. Ltr., Col. Gibson to Cmdr., ARDC, subj.: "Justification and Request for H-21 Type Aircraft," 19 October 1956; interview, Maj. Simons by Dr. Bushnell, 14 May 1957; DF, Col. Gibson to Gen. Davis, subj.: "Recommended Action on Aircraft Assignments," 31 October 1956.
- 82. Interview, Capt. Grover J. Schack, Project Officer, Subgravity Studies, by Dr. Bushnell, 30 April 1957.
- 83. Twx, Col. Gibson to Cmdr., ARDC, subj.: [Request for Permission to Fly Below 500 Feet], 17 January 1957; answering TWX, from Hq., ARDC, 18 January 1957.
- 84. Interview, Maj. John J. Anderson, Chief, C. rations Division, DCS/O, by Dr. Bushnell, 16 May 1956.
- See Appendix H for the versions of this directive as of 19 December 1956 and 17 May 1957. The latter makes similar exceptions in the case of missions "involving the use of C-131 and T-29 type aircraft;" but, as indicated below, these two types are used primarily for tracking purposes.
- 86. Project Crossbow, Weekly Test Status Report, 13 December 1954, 21 December 1954 3 January 1955.
- Missile Countermeasures Division, "Historical Data ... l July - 30 September 1956"; telephone interview, Mr. A. F. LaPierre, Assistant Chief, Missile Countermeasures Division, by Dr. Bushnell, 3 May 1957; interview, Maj. Anderson by Dr. Bushnell, 3 May 1957.

- 88. Memo, Maj. Anderson to Col. Elder, subj.: "C-131
 Operations," 7 September 1955. Undoubtedly the problem
 was aggravated by the fact that Holloman had only one
 VC-47 assigned especially for transportation of highranking personnel (ltr., Col. Elder to Cmdr., ARDC, subj.:
 "HADC Projected Aircraft Inventory," 4 October 1955).
- 89. A DCS/O directive on this subject is included as Appendix I. Similar terms are laid down in the Flight Test Division's Standard Operating Procedure 26, subj.: "Use of C-131 Aircraft," 31 December 1956.
- 90. DF, Col. Haney to Cmdr., HAFB, subj.: "Operation of C-131,"
 22 May 1956.

III. FAILURES AND PROBLEM AREAS

As the scale of test operations on the Holloman-White Sands range increased, the number of cases in which Holloman proved unable to deliver air support when requested increased also. For a time, in fact, incidents of non-support appear to have multiplied much faster than the number of missions completed. This last conclusion would be impossible to prove mathematically without an undue expenditure of research manhours, but there was little doubt among the users of air support services, who found ample room for complaint during 1955-56.

There had always been some cases of both non-support and partial support(such as providing one chase plane when two were needed.) A certain number of human and materiel failures will occur in test support flying as in any operation, and not always in time to be remedied before scheduled takeoff. However, about the start of 1955 if not before, such failures began to occur with undue frequency. Brigadier General (now Major General) Leighton I. Davis, Commander of Holloman Air Development Center, wrote that operations

...practically ground to a halt on 4 February [1955] for lack of test support aircraft. The two F-80 aircraft assigned to this Center and the four F-86 aircraft are all early models which require excessive maintenance. Missions requiring chase aircraft have doubled within the past year and during this period we've lost one F-86.

General Davis went on to explain that out of eight F-86, F-89, and T-33 aircraft assigned only one was in commission, and that in the previous December and January forty hours of missile tests had been cancelled for lack of chase aircraft. Eighty hours more simply had not been scheduled for the same reason.

In the first three months of 1955 there were seventy-five "incidents" of lack of support, complete or partial. September and October, according to still another count, around thirty missions were cancelled and thirty not scheduled for lack of chase aircraft, while presumably other missions were flown with partial support that limited their effectiveness. To be sure, cancellation figures and the like must not be taken too literally. The more flying is accomplished, the more chances there are for aircraft malfunctions to develop, and the sooner periodic inspections come due; hence an increase in support rendered may actually lead to more cancellations. Likewise the record may show seven separate, consecutive cancellations for a minor project that flew its mission successfully on the eighth try with no real hardship resulting from the delay. the other hand, neither does the record show all the times that a project does not even attempt to schedule, knowing the effort would be useless. Certainly the air support problem appeared real enough to the units directly affected, such as Recovery Systems Division, which for fifteen consecutive weeks

had no B-26 drop aircraft available for parachute tests.

The following year, 1956, produced a similar batch of statistics on nonsupport. In July, for instance, Falcon Project scheduled some fifty-eight missions. Of these, eleven were cancelled or aborted primarily because support aircraft (including drones) were unavailable or malfunctioned; twelve were cancelled or aborted because of project (bailed) aircraft, and twenty-four for other reasons, in some cases because a project decided the test was not needed. Thus the failures due to support aircraft were roughly one-third as many as the total missions completed. In that same month Rascal Project did not lose a single mission for reasons of air support, but then it had only scheduled six. In August. the number of cancellations for all projects, including those that did not require air support, was 121; of these fourteen were traceable to support aircraft and two to lack of drone This presented a more favorable picture than did the Falcon totals for July, but individual units continued having their troubles. In the last quarter of the year Recovery Systems Branch (formerly Division) alone had twentythree cancellations for lack of "available, suitable, aircraft."

One of the more embarrassing aspects of the air support situation was the fact that under the terms of range integration both Army and Navy suffered along with the Air Force

itself. Spokesmen for the Army's Ordnance Mission, White Sands Proving Ground, were especially unhappy over lack of drone support for Nike missions. This complaint primarily concerned the 3225th Drone Squadron, a tenant unit that otherwise was spared most of the criticism directed against the base air support organization. The Army listed eleven cases in which drone support was "refused" from 9 August to 10 September 1956 and nine more from 11 October to 18 December. 9 It is worth noting that some of these cases involved an apparent misunderstanding, as when the Army charged the Drone Squadron with nonsupport of a mission, while records at Holloman indicate the same mission was cancelled by project orders. In still other cases "cancellations" appear to have been lumped loosely together with missions refused by the Drone Squadron for technical reasons, e.g., because a request was made for a "kill" when the latter was not authorized for the project. Indeed the squadron itself claimed that it was unable to meet only one authorized request for drone support in December, and none in November, and that it repeatedly failed to fly all the missions it was capable of because sufficient requests were not even made. This last remark suggests that drones may well have been ready to go when not needed -- and sometimes were not ready when requested.

Instances of misunderstanding were not limited to the operating level, or to drone support missions. In February 1957,

Headquarters, Air Research and Development Command called Holloman to ask whether the Army had been "refused" additional support for Nike, including certain F-91 modifications for tracking purposes; in April a Department of the Army memorandum reached Holloman formally requesting that this support be provided; whereas in fact the support in question had been provided by Holloman since the previous January. But even if the failures of air support were sometimes more apparent than real, the problem still existed.

The Navy at White Sands also had its complaints, although it was better satisfied with the work of the Drone Squadron and reserved its fire chiefly for Holloman's failures to come through on Pogo-Lo-type target drops. From 15 July to mid-September 1956 the Navy requested high-altitude drops from F-100 aircraft thirty-four times, but only eight times could a mission actually be scheduled, and only once was it successfully completed. A curious and especially exasperating case occurred on 20 December, when a Pogo drop was originally scheduled with an F-94, the F-94 proved unavailable, and an F-100 turned up instead. Fortunately the Navy was prepared for such an eventuality, having sent the necessary equipment to be used with either plane. Two F-100 Pogo packages were duly mounted, one being a spare; just before takeoff a parabomb for the Hughes Falcon project was substituted for the spare

Pogo package; the remaining Pogo failed to work after the plane reached launch altitude; and with the spare taken off to make way for a Hughes parabomb (which in the end was not launched after all) the day ended in total failure.

The Navy was also critical at times over what it considered excessive caution on the part of Holloman in flying through, over and around an overcast. Fortunately, the recent modification of the Flight Test Division's Standard Operating Procedure on this subject (above, p. 61) promises to reduce Navy complaints. With some exceptions, moreover, both Army and Navy spokesmen have recognized that Holloman was providing the same quality of air support, good or bad, for all three services, and was not discriminating against their projects in favor of its own. The records of range operations bear out this conclusion. In November 1956, for instance, 72% of the missions scheduled by Navy and Air Force reached the range, and 80% of Army missions; for December 65% of the Navy and Air Force missions reached the range, and 69% of Army missions. 18 The fact that 100% did not reach the range was naturally due to much more than simply deficiencies of air support. However, the latter were to blame often enough. The Operations and Plans Division of Holloman's Directorate of Aircraft Missile Test at the end of 1956 not only admitted that the support aircraft situation was unsatisfactory but suggested that the one hope

Pogo package; the remaining Pogo failed to work after the plane reached launch altitude; and with the spare taken off to make way for a Hughes parabomb (which in the end was not launched after all) the day ended in total failure.

The Navy was also critical at times over what it considered excessive caution on the part of Holloman in flying through, over and around an overcast. Fortunately, the recent modification of the Flight Test Division's Standard Operating Procedure on this subject (above, p. 61) promises to reduce Navy complaints. 16 With some exceptions, moreover, both Army and Navy spokesmen have recognized that Holloman was providing the same quality of air support, good or bad, for all three services, and was not discriminating against their projects in favor of its own. The records of range operations bear out this conclusion. In November 1956, for instance, 72% of the missions scheduled by Navy and Air Force reached the range, and 80% of Army missions; for December 65% of the Navy and Air Force missions reached the range, and 69% of Army missions. The fact that 100% did not reach the range was naturally due to much more than simply deficiencies of air support. However, the latter were to blame often enough. The Operations and Plans Division of Holloman's Directorate of Aircraft Missile Test at the end of 1956 not only admitted that the support aircraft situation was unsatisfactory but suggested that the one hope

for improvement in the "near future" was for mission contractor companies to "fly their own support, i.e., photo chase." 19

Aircraft Allocations

Superficially, much of the trouble could be traced to lack of sufficient aircraft at Holloman. Missions were repeatedly cancelled, or refused for scheduling, because the base inventory lacked a specific aircraft type--for example, a B-57 for certain high-altitude parachute drops that could not be accomplished by F-100. Most of the borrowing of aircraft from other installations was due to the same cause, and, as pointed out in the preceding chapter, this procedure was not wholly satisfactory. Even when a needed aircraft type was represented at Holloman, there were not always enough for backup purposes, and instances of non-support, or merely inadequate support, naturally resulted. The Aero Medical Field Laboratory's chimpanzees had a valid requirement for C-131 travel, with its air-conditioned comfort to protect their physical and mental well-being prior to important research tests; but for lack of enough C-131's they had to settle for a C-47. Aero Medical officers also pleaded for an F-94C to be assigned exclusively for their subgravity studies, noting that many missions had been cancelled because aircraft modified for this purpose incurred a need for maintenance while flying for other projects. But again there were not enough

to go around, and the request was turned down. 22 Indeed almost any project would prefer not to share its support aircraft with anyone else, but with the increase in support requirements this has become almost impossible to arrange save through the technique of bailment to contractors.

According to standards set by higher headquarters, Holloman actually needed no less than seventy-two assigned aircraft as of October 1956, if the Center was to meet its air support obligations. This was roughly two-thirds more than the Center possessed. 23 By the following March the number theoretically required had grown to eighty-one, but the number assigned had not increased. Since Holloman lacked a high Air Force priority in obtaining aircraft, it was doubtful that allocations would ever equal requirements. When new planes did come to Holloman, they commonly arrived later than promised. And they were often second-choice types, or "off" models of a desired type--in extreme cases "junk," as expressed by Lieutenant Colonel Oakley W. Baron, Chief of the Flight Test Division-so that other types and models might be reserved for tactical Air Force units.

Although aircraft use rates at Holloman are not exceptionally high, there was little chance of increasing them appreciably and thus getting more work out of the assigned inventory. Test support planes are inevitably kept idle during many of the

day-time duty hours as a result of project delays and preparations. Opportunities for night and weekend missions are also limited, except in the case of training and administrative flights that would simply hasten the arrival of inspections and malfunctions and would thus tend to lessen the availability of the aircraft for mission flying.

The lack of sufficient aircraft made it necessary to ration flying hours among both Holloman and White Sands activities. It was thus unfortunate that the Flight Test Division, by general agreement, came under poor management at the very time in late 1955 and start of 1956 when the scale of operations was hitting its peak and late-model aircraft were arriving to support more advanced test programs. A special problem, as stated by Operations Policy Guidance Number 1, issued 3 January 1956, was the "continuing history of instances in which test and test support aircraft have been dispatched on cross country flights resulting in cancellation of missions." Command headquarters consequently advised that such flights made with a test-support coded jet would be reason enough to transfer the plane away from Holloman. Nor were jets the only planes involved, as the C-131 troubles described in the previous chapter will indicate. However, this situation was soon remedied, in large part, by a reorganization of the Division. Colonel Baron, who assumed control in February 1956, was a

higher-ranking officer than any of his three immediate predecessors, and in addition was given two majors as assistants. Quite apart from the experience and ability of the officers in question, this imposing array of rank was in itself of considerable help in warding off requests for improper use of primary mission aircraft.

Aircraft Maintenance and Related Problems

As a matter of fact, more aircraft could have been obtained for Holloman without much difficulty, even if not the exact number and types desired. However, the Center would not have wanted to receive the planes that conceivably might have been made available, nor would higher headquarters make them available, so long as the base maintenance capability remained inadequate to take care of them. Maintenance was, in fact, a more basic problem area than aircraft allocations, at least from the standpoint of the base-assigned inventory. The Army recovery service by comparison appears to have had rather few maintenance problems. The Drone Squadron was also relatively well off, having generally fewer types to maintain in proportion to total aircraft, no late models, and a large stock of familiar, trusty B-17's. Drone modifications and repairs were still a major undertaking, but responsibility for the more difficult jobs was 28 shared with the base maintenance shops.

In the early 1950's maintenance had not been a serious problem area even for base-assigned aircraft. At that time each plane generally supported fewer projects, use rates were lower, and in-commission rates (the normal standard for judging maintenance effectiveness) were correspondingly higher. In fiscal 1952 the overall in-commission rate was not quite 70%, a very satisfactory figure. 29 Subsequently the rate fell, although the decline was mostly gradual if one considers only year-around averages: in fiscal 1956 the rate was 60% for test and 64% for non-test aircraft. However, such average figures can be deceptive. In a single month the in-commission rate might still fall below 50%, as it did, say, in September 1955 for test support aircraft; 31 while in the month of August 1956 an all-time low was reached of 36.2% for test support and 24.1% for non-test aircraft. What is more, it did no good for a plane to be in commission during non-duty hours, or between scheduled missions, however much that might help the statistical ratings. What the test program required was for planes to be in flyable status at the very moment they were needed for a mission, and all too often this was not being accomplished.

Also serious was the fact that the planes most critically needed were sometimes the very ones most frequently out of commission. During the first ten months of 1955 in-commission time for piston aircraft varied between 72% and 80%, whereas

for jets it varied from 72% down to 32%. Within the jet field itself there were further variations, with the T-33 making a generally good showing and later-model jets a poor one; periodic inspections on the F-89B were then averaging seven weeks! This last figure was a little unusual, but it was only natural for newer, less familiar planes to take longer in inspection. The newer types were also plagued with more frequent modifications, by and large, and it took longer to build up adequate base stocks of parts and supplies. 33 The worst problems of all were posed by the arrival of the F-100, early in 1955, which was destined to become Holloman's number one maintenance headache. The F-100 was the first supersonic type at Holloman, and one that gave trouble at other bases, too, when first introduced. The fact that Holloman received a sizeable contingent of F-100A's, which were even harder to maintain than other models, did not help matters. A final complication was that the F-100 had been selected as the basic chase type at Holloman and therefore had a relatively high use rate. Early in 1957 the average F-100C was flying three test missions a day when in commission -- and thus went out of commission all the more often.

blamed on the supposedly excessive number of aircraft types in the base inventory. However, this can be accepted only within certain narrow limits. The number of types is no doubt greater, in proportion to total aircraft on hand, than in a tactical or strategic bombing unit, but it is definitely less than at some other Centers in Air Research and Development Command. A slightly better excuse might be found in the nature of the flying accomplished. With certain exceptions, aircraft use rates are not especially high, but a large smount of flying is of the stop-and-go variety or short test missions, which means that aircraft get more wear and tear per flying hour. However, the exact importance of a factor such as this is almost impossible to measure.

A factor that is simpler to isolate, and has varied greatly in importance over the years, is lack of parts. The percentage of test aircraft awaiting parts—i.e., conventional "AOCP" plus the relatively minor category of Aircraft Not Fully Equipped because of Initial Shortage (ANFE/IS)—was 3.0 in July 1953, 0.2 in September, and then remained at zero for the last quarter of the year. It was slightly higher for non-test aircraft, but this was not as serious. On the other hand, during fiscal 1955 the rate for test aircraft was nearly thirteen—the worst in the entire command. In September 1955

the all-time record was reached of 21.4 for test aircraft. These figures, like so many others, are slightly deceptive, if only because maintenance personnel had been labelling some planes out of commission for parts even when they could have been made flyable without the parts in question, or were out of commission for some other, more important reason as well. This procedure allowed Holloman to obtain the best rating in the command for maintenance effectiveness at the same time that it had the worst rating for aircraft awaiting parts, since planes in the latter category were not charged against the maintenance function but rather against supply. Yet the parts situation was not good, and one reason appears to have been precisely a lack of cooperation between the maintenance and supply functions at Holloman. Another cause was a recent, sharp increase in . flying time, while the fact that Holloman generally had few planes of any one aircraft type meant that the base could not normally keep on hand as full a stock of parts for each type as would have been possible otherwise.

Fortunately, the parts situation was soon brought under control. By April 1956 the rate for test support aircraft was down to 1.7 per cent. One reason for the improvement was the introduction of thrice-weekly, scheduled logistic flights from Holloman to Tinker Air Force Base, seat of the Oklahoma City Air Materiel Area. Other scheduled flights were made to Kelly

Air Force Base, Texas (i.e., San Antonio Air Materiel Area), and to Biggs Air Force Base at El Paso, Texas. The fact that Holloman was not on any regular Air Force logistic supply routes made these flights appear all the more necessary, but unfortunately they went against standing Air Force regulations that prohibited scheduled domestic flights by military aircraft save under very special conditions. For this reason, and also for lack of sufficient C-47's to keep up the service, it was abandoned in mid-1956. The number of planes awaiting parts promptly went up again, although it never approached the level of September 1955. Indeed for all of calendar year 1956 as contrasted with calendar 1955 the percentages of aircraft out of commission for parts (this time not including "AFNE/IS") were 3.4 and 8.5 respectively. This striking improvement reflected greater efficiency in both supply and maintenance, and better cooperation between the two functions. One of the most notable advances has been in preparing for the arrival of new aircraft types. Holloman's performance had once been rather poor in this respect, but in getting ready for the Center's first F-104 the local Supply Squadron abandoned the usual requisitioning routine and directly contacted Edwards Air Force Base, where the plane had been undergoing tests, to find out what parts were most likely to be needed. On the basis of Edwards' experience, Holloman then put in a generous lump