OPERATIONAL CLIMATOLOGY FOR RESEARCH BALLOONING IN SOUTH CENTRAL NEW MEXICO

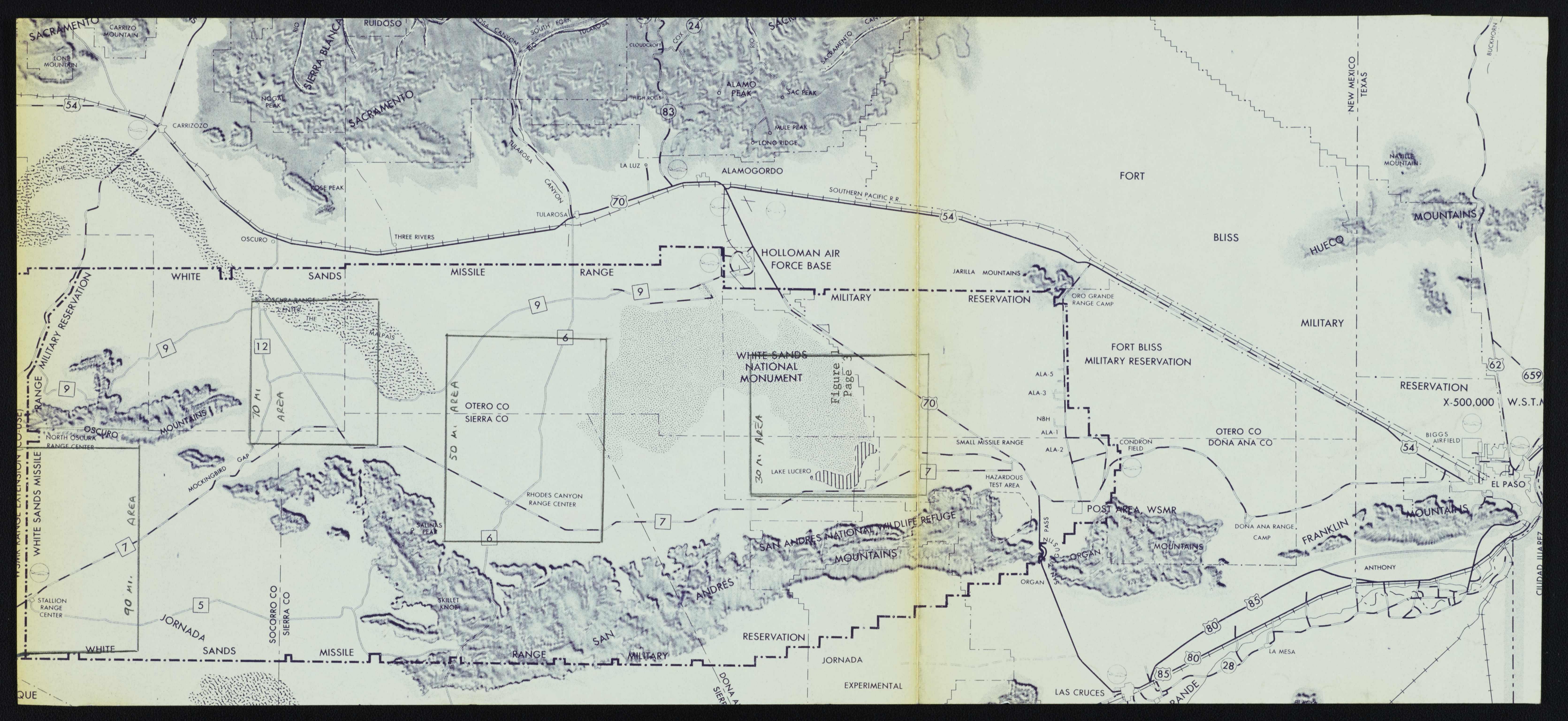
1. INTRODUCTION

Specific details of this report apply to the primary launch area of the Air Force Geophysics Laboratory (AFSC) Balloon R&D Test
Branch, located at Holloman Air Force Base, New Mexico on the edge of
White Sands Missile Range, and to plastic, constant-level (Skyhook)
balloons. However, most of the upper air parameters are applicable
within a 100 mile radius and very generally for much of the Southwestern
United States. Furthermore, supplementary information pertaining to
remote launch sites includes a good deal of the entire state of New
Mexico. Research flights with stratofilm or any other species of
balloon would be effected by much of the included climatology. A
variety of test programs located at or near White Sands Missile Range,
may find areas of particular interest within the subject matter.

The initial discussions are of primary interest to flight schedulers and project officers planning research balloon operations in the area.

Operational logistics can be substantially simplified, if well in advance, periods of optimum weather conditions are determined by competent climatological analysis, and the flights scheduled accordingly. The vital importance of advance flight scheduling has been covered in previous reports.

The remainder of the material is designed to be utilized as climatological aids for supplementing balloon flight forecasts.

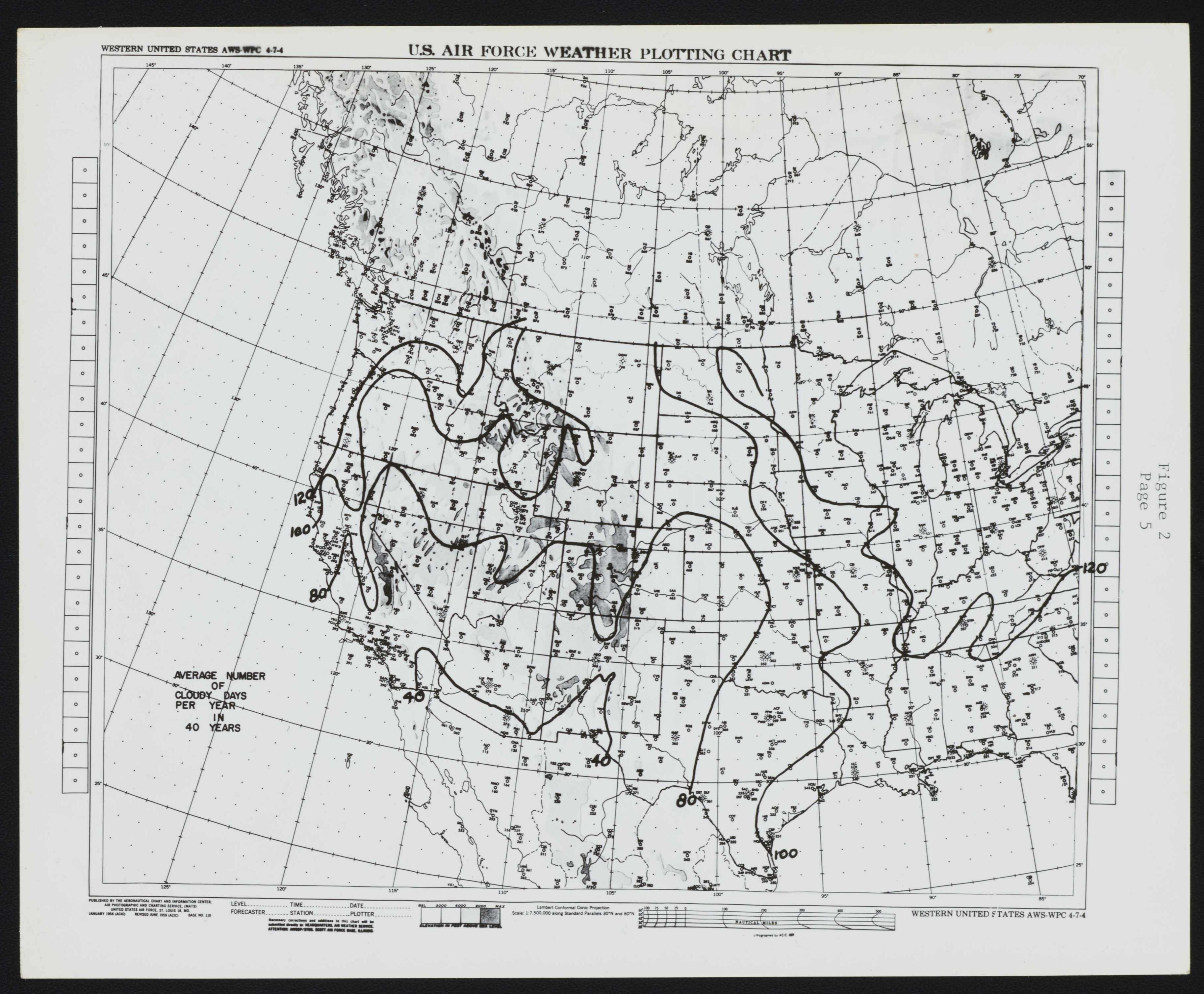

The layman may wonder at the detailed preparations and forethought dedicated to an apparently uncomplicated vehicle. Modern plastic balloon operations however, involve cells larger than a football field not much thicker than a sandwich bag, carrying as much as a million dollars worth of payload. Gross loads have exceeded six tons and special breeds exhibit flight durations of more than a day.

2. GENERAL CLIMATOLOGY

The White Sands Missile Range is located in the Tularosa Basin of southern New Mexico. It is bordered by the Sacramento Mountains on the east, varying from 4000 to 8000 feet above the valley floor, and by the San Andres Mountains to the west, standing from 3000 to 5000 feet high. (Fig 1) The Oscuro Mountains and a high mesa partially close off the north, and the south opens up into Mexico. The basin area is approximately 80 nm by 30 nm.

The launch site for the largest balloons is most frequently at Holloman Air Force Base, which is within ten miles of the Sacramento Mountains.

The basin is located at a southerly latitude (33°) and usually sees only the weak tail end of frontal activity. Even during the winter all but the most virulent polar outbreaks are shunted aside by the eastern slopes of the Rocky Mountains. Frontal activity therefore, generally represents more of a surface wind and downwind landing problem. Cloud problems are furthermore alleviated by surrounding restricted air spaces where many of the FAA regulations pertaining to climb out of research balloons do not apply.


In addition to the artificial aid donated by restricted areas, the low incidence of cloud coverage in general is perhaps the most positive credential of the area. In Figure 2 we note that the area of minimum cloudiness for the United States includes the Tularosa Basin. During May for instance, the skies at dawn are clear to scattered 80% of the time. The extreme case is 0500 in November, when the percentage reaches 87%.

The protective effect of the Sacramento Mountains, are illustrated by cloudcover statistics for May, where Roswell, just on the east side of the mountains, shows 15% fewer cases of clear to scattered, than White Sands Missile Range.

Three hundred miles of moisture absorbing mountains to the west, also aid in generating arid and semi-arid conditions. Even in May which includes some of the dust storm season, visibilities are unlimited 90% of the time, up through noon. Humidities and fog frequencies are correspondently low.

The mountains help to break up pressure gradients and thereby decrease the potential for surface winds. Winds for 900 feet at Holloman Air Force Base, for instance, are on a monthly basis, always better than the 500 foot winds east of the mountains. In August, the 500 foot winds at Forth Worth, are less than 10 knots 17% of the time, and the Holloman 900 foot winds show 53% for the same category.

Although the mountains are generally protective, the complex terrain does generate complex wind patterns. Launch sites ten miles apart can have radically different conditions. Canyons may volley

OFFICIAL PHOTOGRAPH UNITED STATES AIR FORCE

Photographic Branchi Holloman A. F. B. New Mexico.

Neg. No. Print No. Prints
Photo Proj. Control No.

unexpected gusts, and drainage from the mountains can amplify a light gradient wind.

A survey of flight cancellations by AFGL at Holloman AFB, kept spradically over seven years domonstrated the following break down by cause:

Cause	No Cases	
Surface Winds	65	* NOT AS BIG
Jet Stream	15 *	BETTER BALLOONS.
Minimum Temperature on Climb Out	14*	
Cloud Coverage	76	

The cloud coverage figure includes downwind stations and is also biased by requirements for almost clear conditions on certain target missions. However, it does indicate that surface winds are not necessarily on over riding factor. Nominating an average of 6 knots with gusts to 9, at 60 feet (roughly the centroid of the gas bubble during inflation) as the limiting launch wind, 63% of 128 work days during the last year were acceptable.

Very generally, White Sands Missile Range is halfway between a national surface wind minimum running through the Western New Mexico, Arizona, Nevada and California desert regions, and a maximum ranging from south central Texas into Kansas.

Jet stream activity is less than average. The region is 400 miles west of the national maximum, but receives occasional visitations from the subtropical jet, which compensates for conspicuous absence in summer.

JET STREAM PARAMETERS

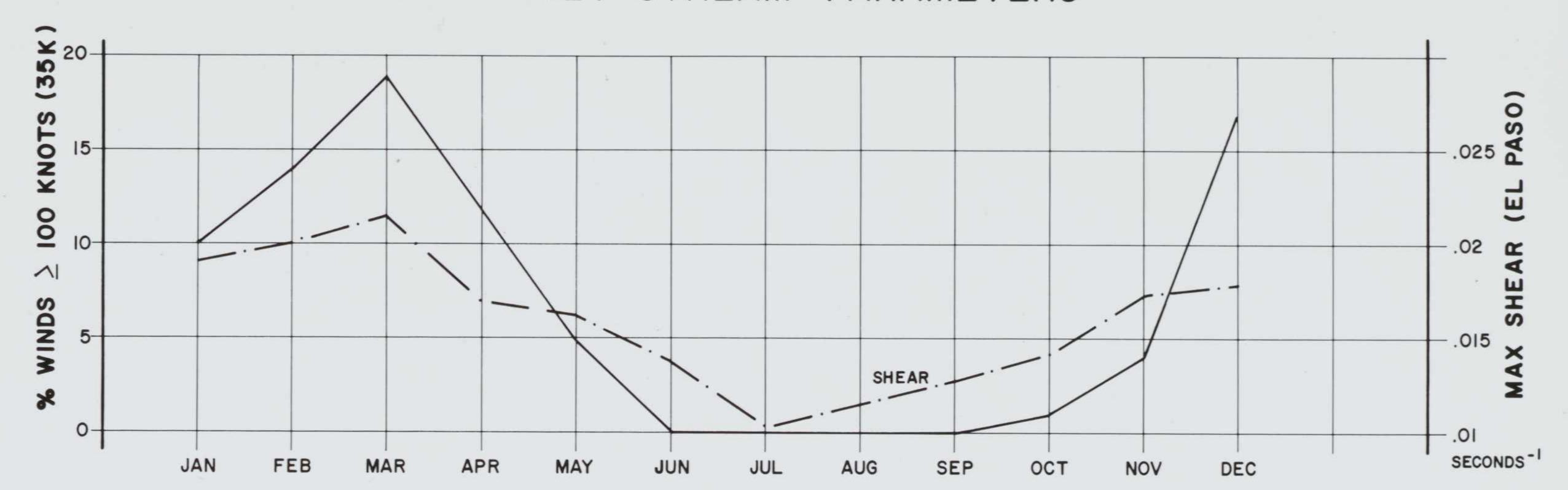
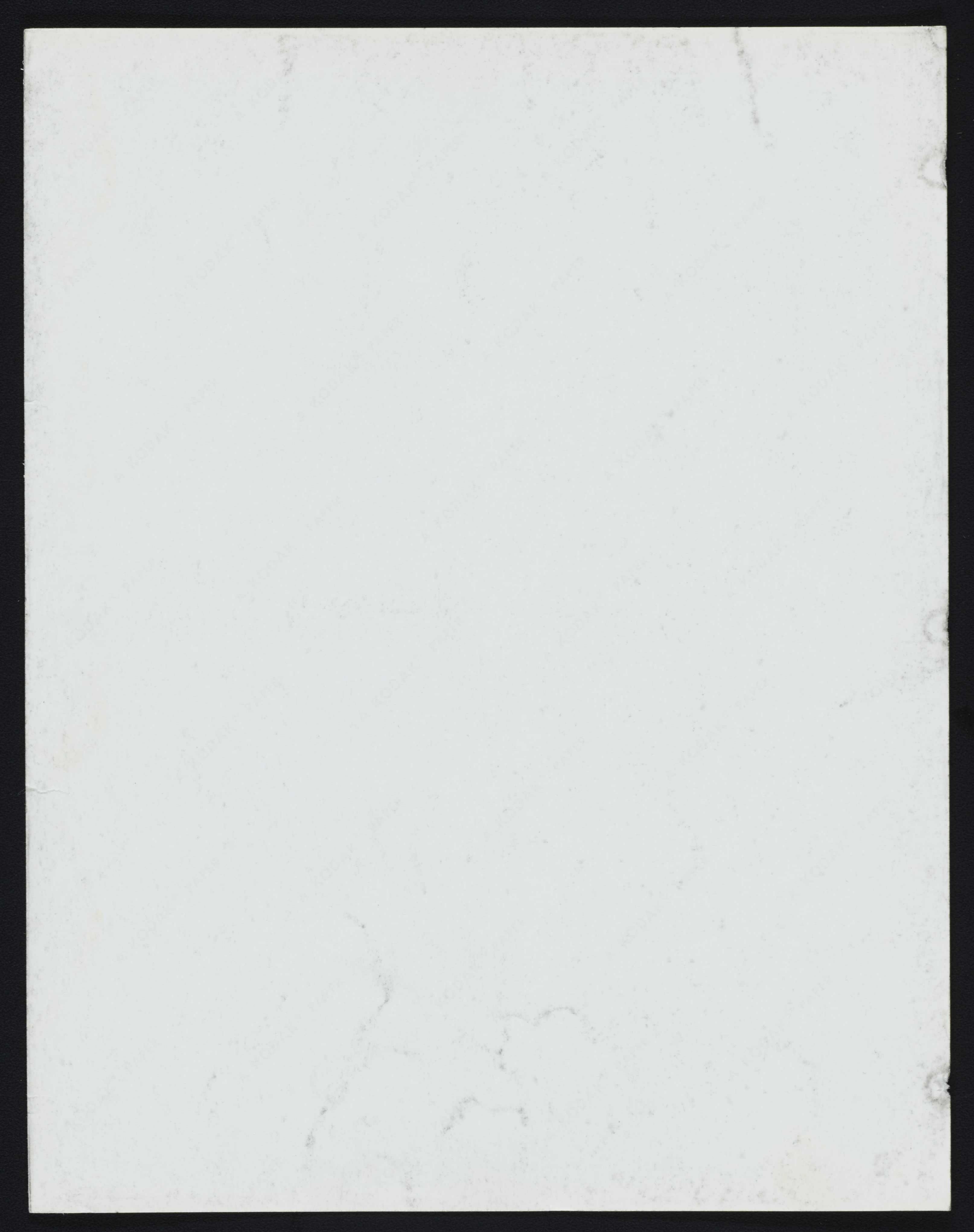



Figure 5 Page 13

The minimum temperature found at or near the tropopause can be a problem for balloons of certain materials. The temperature decreases systematically towards the south, at these levels and White Sands Missile Range temperatures average about ten degrees centigrade colder than standard.

Thunderstorm activity is restricted to the summer months, and nurtured by the surrounding mountains. The moisture comes up from the Gulf of Mexico, and the most intense activity is triggered by very weak summer fronts or easterly waves. Primarily, however, the activity is diurnal. One can usually depend upon launching after the night time activity is diminished, and before new vertical development commences. Downwind afternoon activity is the major problem in these months.

2.1. Monthly Climatology

Seasonal changes obstinately prefer to overlap months, but since data is normally summarized in monthly form, these become the most convenient time intervals for describing trends.

The best criteria for evaluating monthly weather would be by actual cancellation. One can look at daily reports for the whole year, and define limits. On an actual flight, however, compromises and adjustments are made which impart more degrees of freedom. The primary weakness of rating months by actual cancellations, is the flight frequency, which is biased by other factors, such as climatological recommendations, and the winter holidays when White Sands Missile Range closes down. Nevertheless, the record of cancellations is a good starting point for monthly ratings.

In seven years, from 1957 to 1964, there were 1147 days with flights scheduled, and 274 cancellations for weather. Break down is as follows:

	Total Scheduled	Per Cent Cancellations	Rating by Month
January	118	25	5
February	119	33	12
March	94	29	8
April	97	30	10
May	94	5	1
June	88	28	7
July	106	16	3
August	95	15	2
September	82	29	9
October	101	27	6
November	72	18	4
December	81	31	11

Overall cancellation rate was 24 per cent. This period was heavily populated by target missions, where the balloon was launched upwind and terminated over White Sands Missile Range. In Figure 3, we see a statistical study over three years, which considered launch site conditions only. May is again verified as an outstanding month but March deteriates significantally. However, a break down of parameters for the seven year study shows March to have the most cancellations for cloud coverage.

MONTHLY DISTRIBUTION OF FAVORABLE LAUNCH DAYS HMN 1954-1958 16 15 14 -12 -CATEGORY A 10 -CATEGORY A: Р 1. Minimum temperature aloft at -72°C or warmer. 2. Maximum wind aloft 110 knots of less. MEAN NO. 3. Gradient wind, nearest wind available to 1500 ft, 15 knots or less. 8 4. Cloud coverage 5-tenths or less. CATEGORY B: 1. Minimum temperature aloft of -70°C or warmer. 2. Maximum wind aloft 80 knots or less. 3. Gradient wind, nearest wind available to 1500 ft, 10 kmots or less. 4. Cloud coverage 3-tenths or less. 5 -CATEGORY B 2 -DEC 52 APR MAY AUG SEP NOV JAN FEB MAR JUN JUL OCT 57 55 76 78 NO. OF OBS 59 59 66 NO. OF OBS FAVORABLE FOR "A" BUT NOT FOR "B" 17 12

CANCELLATION PARAMETER

	Surface Wind	Clouds	Jet Stream	Minimum Temperature	General
January	7	3	1	0	18
February	3	8	11	2	15
March	10	14	0	0	3
Apri1	12	12	0	0	5
May	5	0	0	0	0
June	11	7	1	4	2
July	2	12	0	3	0
August	1	6	0	0	7
September	2	9	0	3	10
October	7	5	0	0	15
November	3	4	0	1	5
December	2	8	2	1	12

Another statistical study performed for only one year, but including downwind weather rated August the best month with December and March the worst. November was sharply compromised by downwind weather. Over a 17 year period, the greatest number of launches have been in July and August, the least in November and December.

2.1.1. Individual parameters by Month

Figures 4, 5 and 6 break down some of the individual parameters effecting balloon operations. On Figure 4, 0 to 4 knots may seem like an exorbitantly low value even for balloons, but the data is taken at the standard level of 13 feet above the ground. Most of the balloon gas bubbles have centroids about 50 feet, where the wind speeds would

HOLLOMAN SURFACE WINDS 0-4 KNOTS % FREQUENCY 20 YEARS DATA

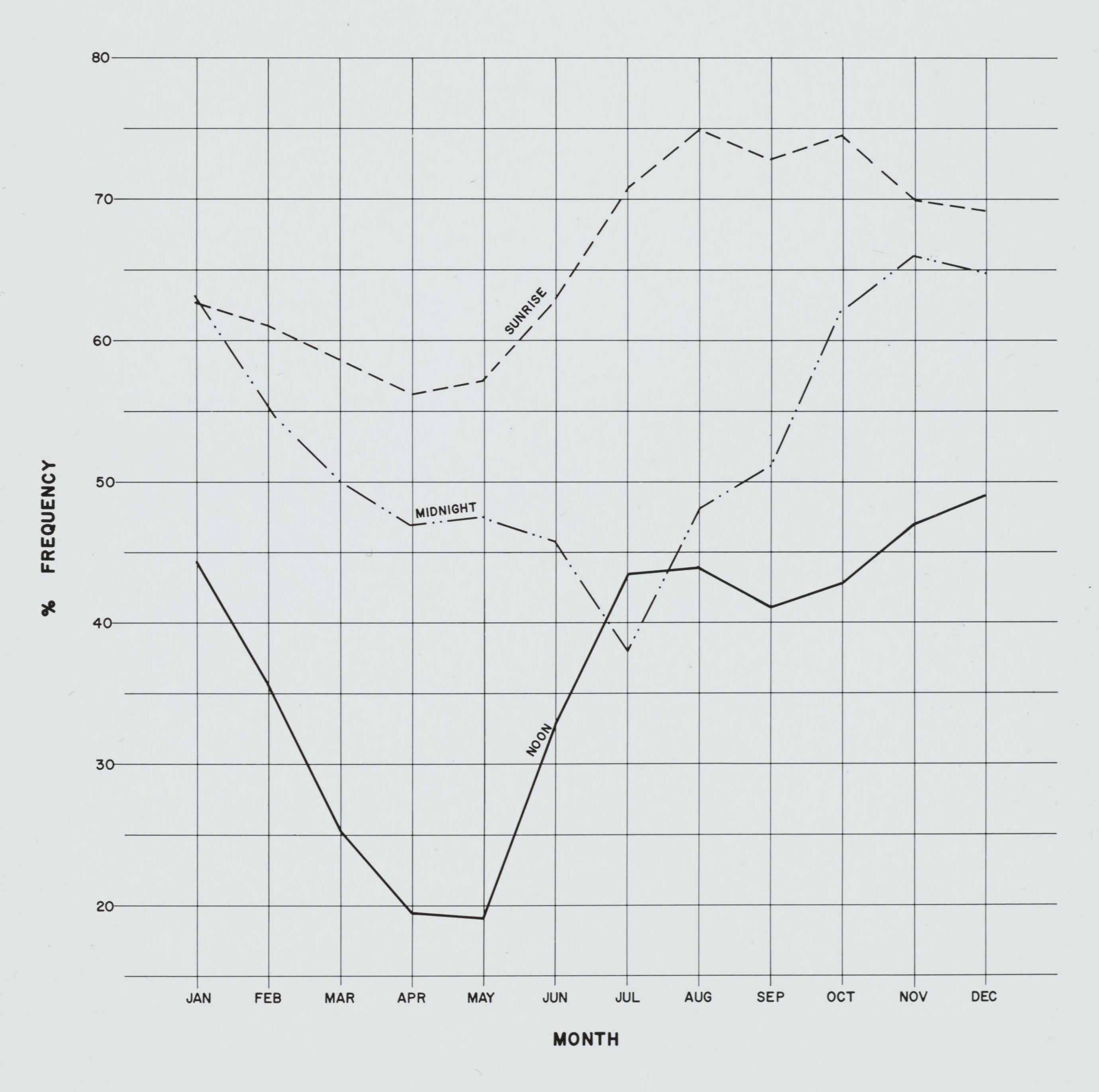
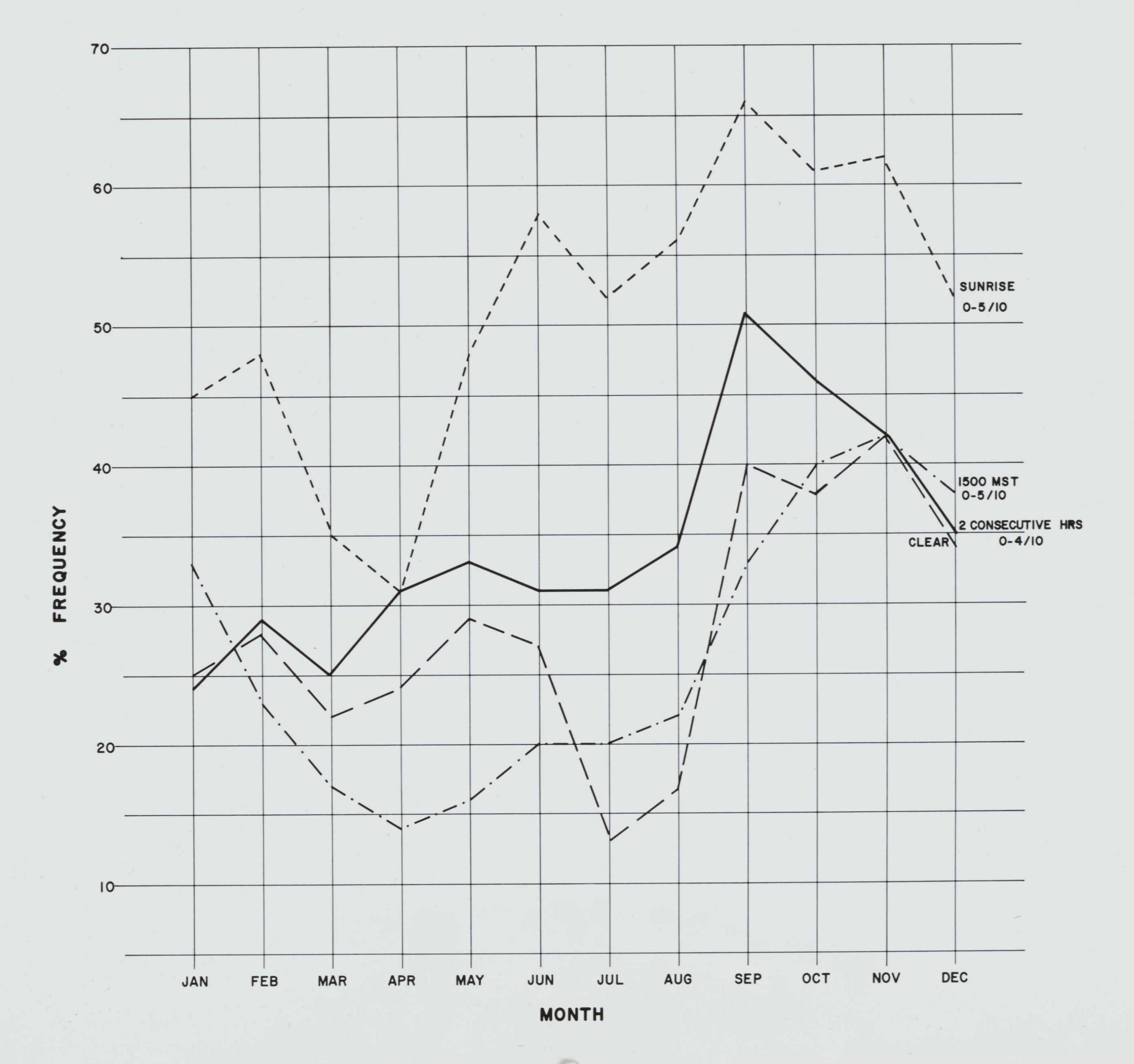
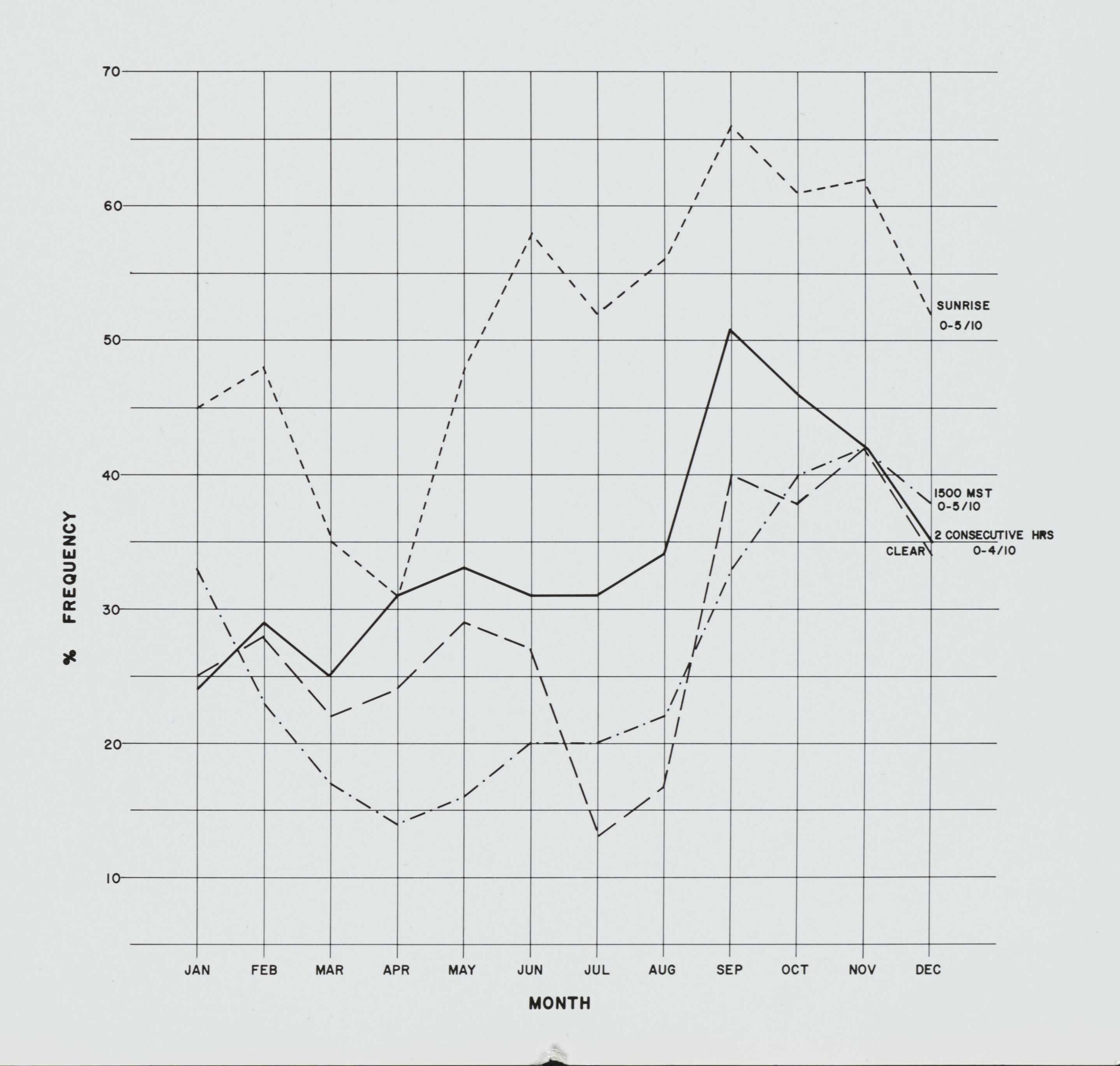
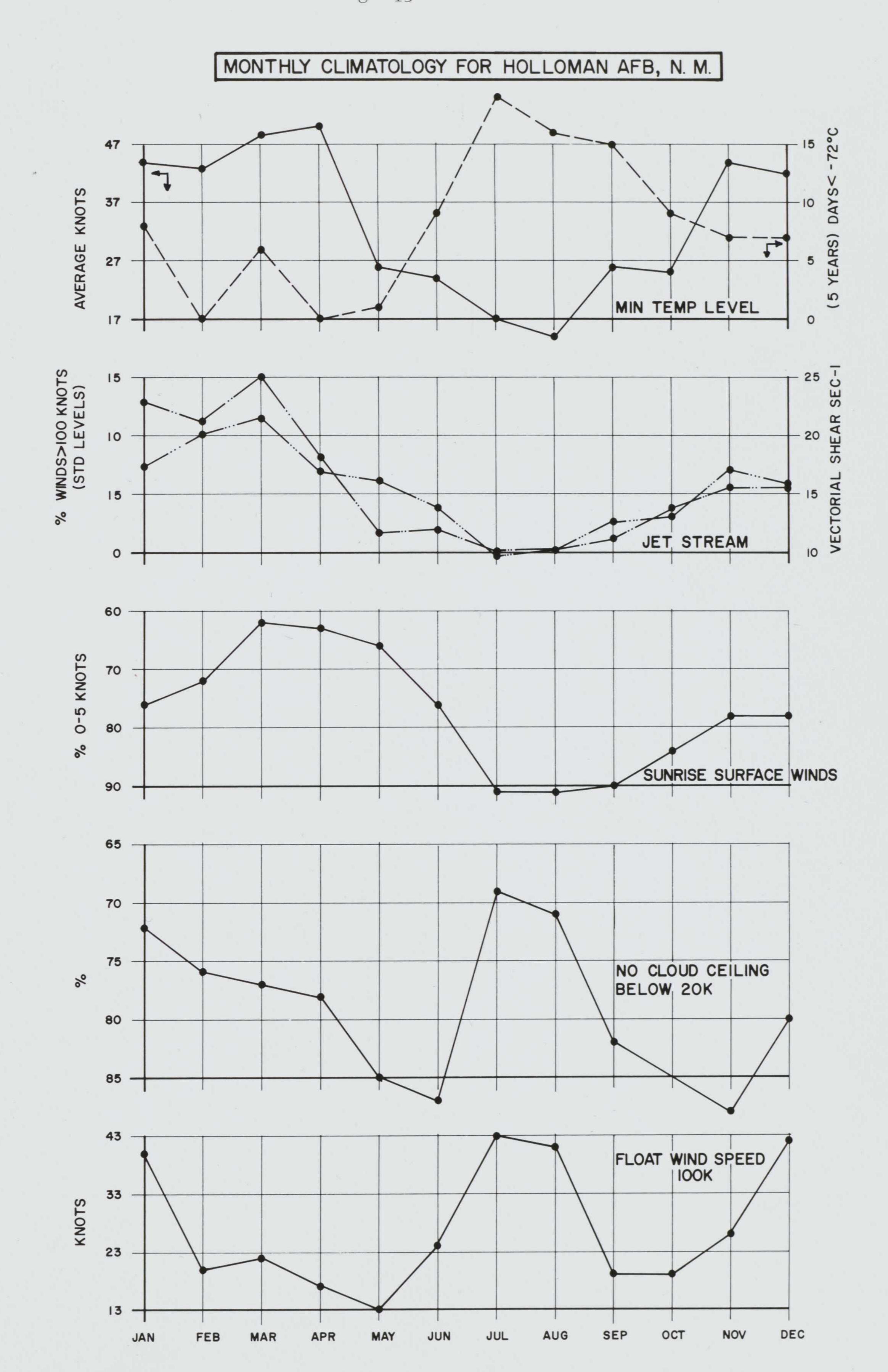


Figure 4 Page 11


be a few knots greater. Note that the best season for noon launches is the winter, when inversions can persist most of the day. January is the one month where the minimum wind is as likely to occur at midnight, as at sunrise. The dip in midnight winds in July is due to nocturnal thunderstorm activity. September sunrise winds deteriorate because the pressure gradiant is tighting up after the bland summer systems exit, yet it is still not cool enough to cap off the gradiant wind with surface inversions.

In Figure 5, we see that March exhibits the maximum jet stream speeds, shear and wind in the tropopause. Note that the wind speeds in the minimum temperature layers are luckily out of phase with cold temperature months.


Figure 6, illustrates cloud coverage, with a launchable surface wind contingency. The 1500 MST curve is an attempt to calibrate landing conditions, but only significant for short trajectories. Although Fall looks especially good at this time, Texas can offer considerable cloud problems. On the other hand in summer, the desert areas west of Tucson and Phoenix are drier than New Mexico. Figure 7 provides a visual integration of these parameters, adding 100K float speeds.


2.1.2 Overall Monthly Profiles

January: Finds the strongest float winds and the most frontal systems. It ranks last in the integrated cloud and surface wind rating and for free balloons can be the worst month of the year, in a severe winter. Yet the cancellation rate is less than average, and mostly due

WSMR CLOUD COVERAGE w/O-5 KNOT SURFACE WINDS % FREQUENCY 20 YEARS DATA

to downwind weather. For captive balloon operations below 3000 feet it may be the best month, since inversions can persist all day. Predominate float winds are westerly.

February: Had the worst cancellation rate in the seven year survey. Westerly float winds begin to decrease in speed, and there is increasing probability of sporadic easterly flow.

March: Exhibits the strongest jet stream activity and in turn the longest climb outs. It demonstrated the worst cancellation record, along with December, in the one year study. Surface winds are poor, but the highest percentage of winter easterlies occur in this month.

April: Shows the maximum surface winds at sunrise and the most cloud coverage, but a warm tropopause. Float winds improve sharply in the second half of the month.

May: One of the best months of the year, except for surface winds. There were only five cancellations in seven years. It has the lightest float winds swtiching from westerly to easterly direction and a warm, shallow tropopause.

June: Marks the end of the jet stream season, a cooling tropopause and the shortest climb out trajectories. It is the best month for day long absence of clouds, but the low level jet in the last ten days is at max imum activity. Float winds are easterly.

July: Has minimum jet stream activity and shear, and climb outs completely within the White Sands Missile Range restricted areas negate launch cloudiness. Maximum thunderstorm activity make afternoons and evenings prohibitive for launches and recoveries, but there is a well defined minimum from 0800 to 1200 MST. Float winds are very strong, but this aids in drifting out for landings in drier western Arizona, July sees the coldest

August: Rated Number 1 and 2 in the cancellation studies, with only one cancellation for surface winds in 95 attempts. It exhibits gradual improvement over July in most variables.

September: Thunderstorm activity depletes rapidly after the first ten days, but the hurricane season can make downwind cloudiness marginal. It has the deepest tropopause but is second to May in light float winds and ranks most favorable in combined surface winds and cloud coverage. Float winds begin to switch back near end.

October: Has long duration clams, a warming tropopause and light float winds in the low stratosphere. Above 100K, the winds pick up rapidly in the second half of the month from the west.

November: The best month in the year for night launches, a very erratic month, ranking supreme some years, except for downwind weather.

December: Deteriorates in all variables except in afternoon surface winds. Like November, it can vary markedly from year to year, and a 24 hour manned stratosphere flight was made in the middle of the month, with easterly flow aloft.

3. FLIGHT CATEGORIES

3.1. The Basic Research Flight

The most common species of CLB mission, sees a simple ascent to altitude, with a float at peak altitude, encompassing all available day-light hours. The launch is performed at the time of minimum surface winds, generally close to sunrise. Flight termination is planned, allowing 30 minutes for parachute descent, and about two additional hours of sunlight for the recovery crews to be guided in. Assuming

2.5 hours of ascent time to a nominal 100K (Kiloft MSL), with the 2.5 hour cushion after termination, average float duration for the various months, would be as follows:

January	5.5 hours	July	9.0 hours
February	6.5 hours	August	8.5 hours
March	7.0 hours	September	7.5 hours
April	8.5 hours	October	6.5 hours
May	9.0 hours	November	5.5 hours
June	9.5 hours	December	5.5 hours

The values were rounded out to the nearest half hour, since time of sunrise varies throughout a month, since one can launch 30 minutes prior to sunrise without generally compromising balloon performance and finally, longitudinal displacements can vary the sunset time by almost 30 minutes.

Associated mean displacements, including climb out and parachute drift, would be as follows:

Distance Out NM	Vicinity Of
400 East	Wichita Falls, TX
285 East	Childress, TX
295 East	Childress, TX
220 East	Lubbock, TX
115 West	Silver City, NM
215 West	Tucson, AZ
390 West	Gila Bend, AZ
260 West	Tucson, AZ
	400 East 285 East 295 East 220 East 115 West 215 West 390 West

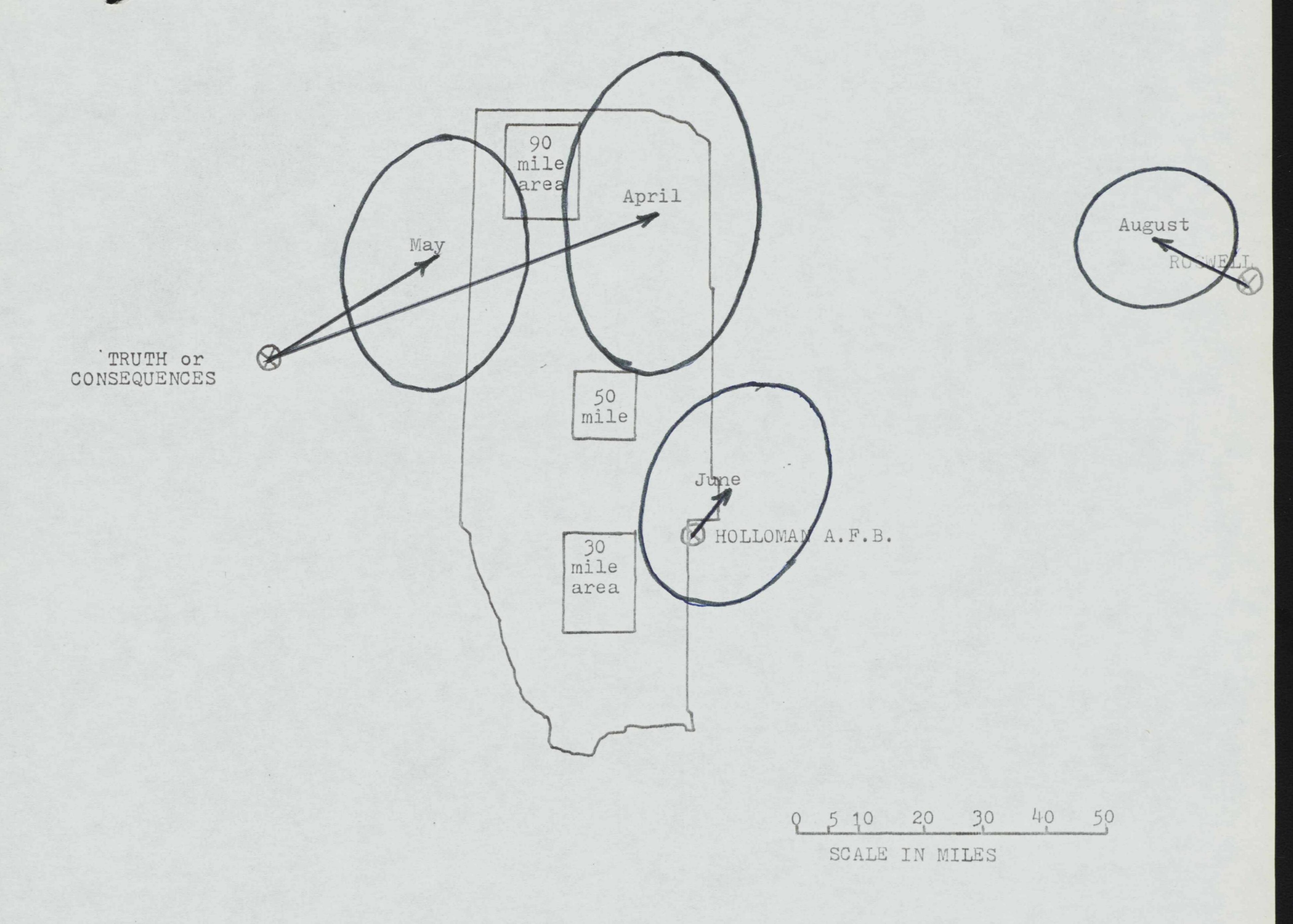
September	135 West	Lordsburg, NM
October	225 East	Lubbock, TX
November	230 East	Lubbock, TX
December	325 East	Abilene, TX

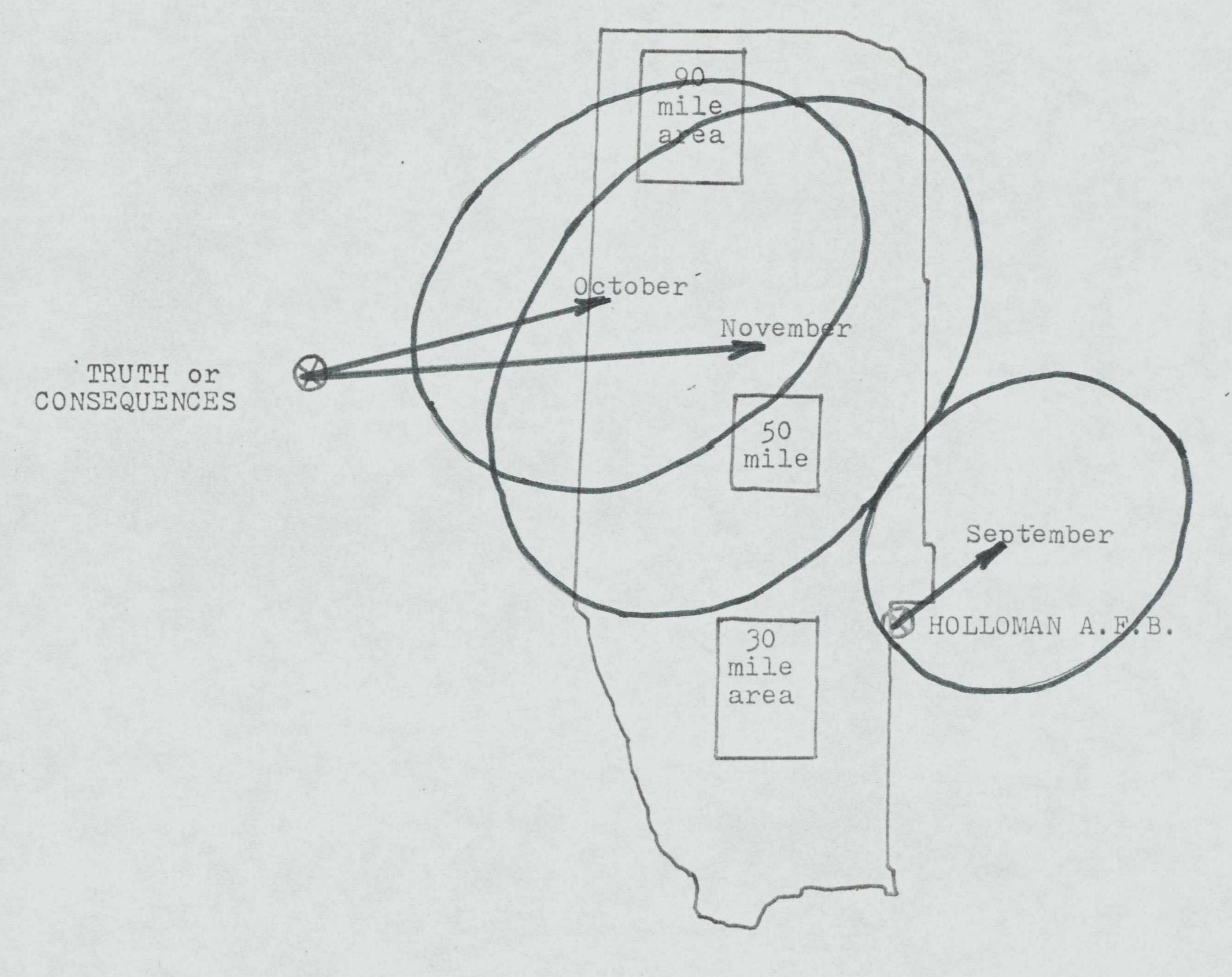
Ratings by month for various parameters related to this flight profile, as as follows:

)istance Out	Launch Surface Winds & Clouds	Landing Area Cloudiness	Min Temp	Jet Stream	Integrated Rating
January	12	12	11	5	10	12
February	8	10	8	4	9	10
March	9	11	10	2	12	11
April	4	9	9	1	11	8
May	1	5	2	3	5	1
June	3	7	1	9	3	3
July	11	8	4	12	1	9
August	7	6	5	10	2	5
September	2	1	3	11	4	2
October	5	2	7	8	6	4
November	6	3	8	6	7	6
December	10	4	12	7	8	7

Low numbers represent the most favorable months. The launch surface winds and clouds are based on an integrated value, where both acceptable winds and cloud coverage must coexist. Ideally of course, one would want this factor ties in with the landing area cloudiness.

These values should be used as a relative guide, since they deal with averages. January has sporadic outbreaks of easterlies, which would then match it with May in trajectory shortness. July and August trajectories are consistently long. The transition months of May and September ideally should be broken down into half months.


The last half of December, through the end of March, is marked by frontal activity which deteriorates the averages, but it can provide some of the finest launch days in the year, when very cold but clear weather generates long duration calms.


May has superb conditions aloft, but the first few weeks are occasionally marred by tail end of dust storm season. Likewise, the first week of September is compromised by residue of thunderstorm season.

3.2. Climb-out Parameters

On some flights the contractor desires data only on ascent, with float time required only to maneuver into a favorable landing area. With no floating the total distance out, with a 900fpm ascent rate, to 100Kft would be as follows: (also see Figures 8-11).

January:	64 NN	1 East-Northeast	(97)	July:	25	NM	West	(31)
February:	61 NN	1 East	(91)	August:	16	NM	West-Northwest	(22)
March:	68 NN	1 East-Northeast	(97)	September:	13	NM	Northeast	(20)
April:	52 NN	1 East-Northeast	(79)	October:	36	NM	East-Northeast	(54)
May:	32 NN	1 Northeast	(45)	November:	52	NM	East	(82)
June:	9 NN	1 Northeast	(17)	December:	55	NM	East	(85)

5 10 20 30 40 50 SCALE IN MILES ROSWELL

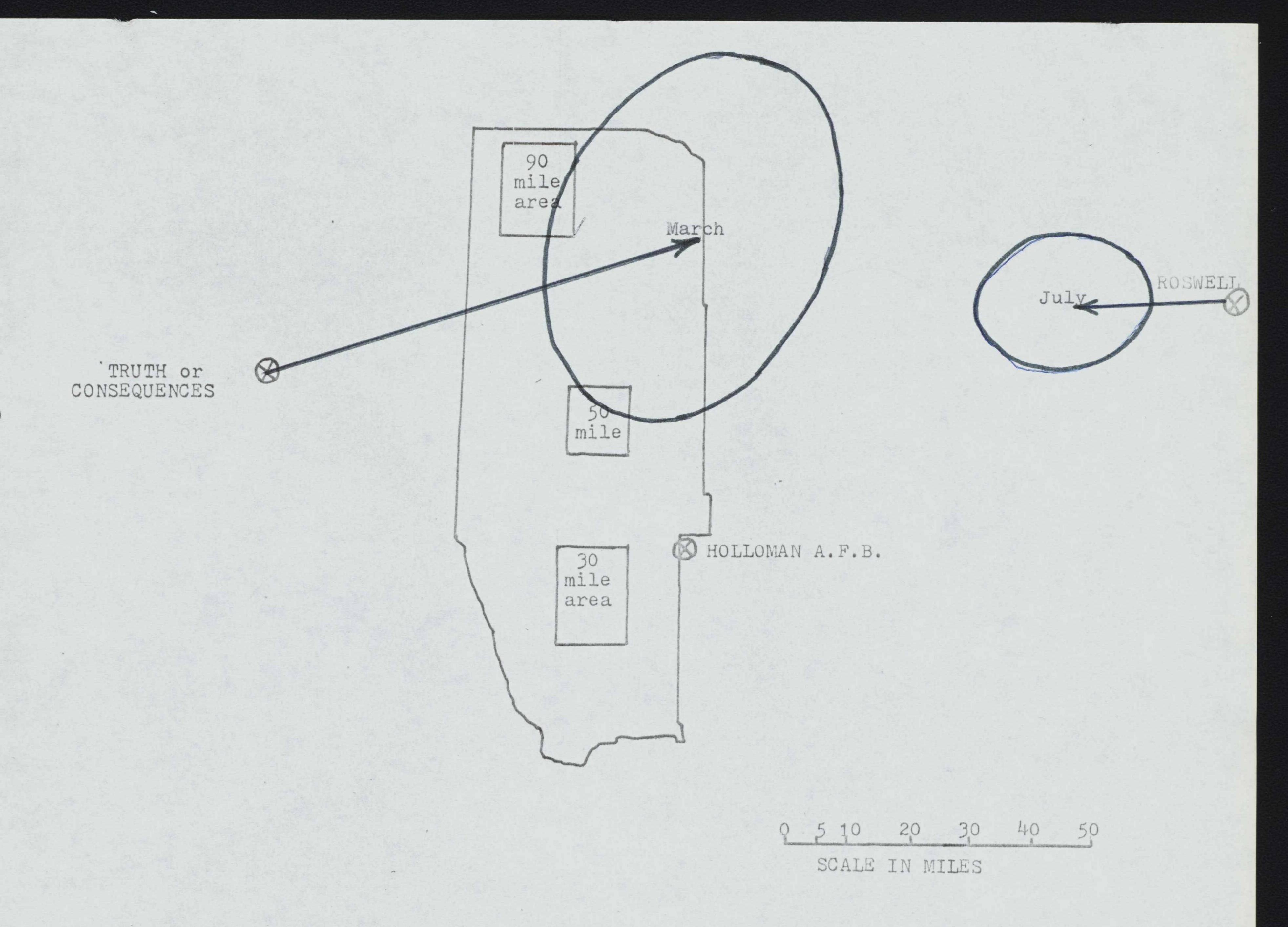


Figure 10: March and July 50% Probalility Trajectory Dispersion Patterns. (900fpm)

T OR C

TULAROSA

ALAMOGORDO SEP

• OCT

• MAY

• FEB • MAR • JAN

• APR

HOPE -

PINON

• DEC

WSMR

• AUG

• JUL

MONTHLY CLIMB OUT TRAJECTORIES TO 90K, 833 FPM

SCALE NM

Figure 11,

Complete spectrum is as follows; rating is by month:

	Climb out Distance	Launch Winds & Clouds	Landing Area Clouds	Min.	Jet Stream	Integrated Rating
January	11	12	10	5	10	12
February	12	10	12	4	9	11
March	9	11	5	2	12	10
April	10	9	2	1	11	8
May	6	5	3	3	5	2
June	2	7	1	9	3	1
July	5	8	4	12	1	6
August	3	6	7	10	2	4
September	1	1	6	11	4	5
October	4	2	8	8	6	3
November	7	3	9	6	7	7
December	8	4	11	7	8	9

The last two weeks of June are marred by the intrusion of the leading edge of the Gulf of Mexico anticyclone, which produces a low level jet in the morning.

3.3 Flight Tests of New Balloon Designs

Generally, the project engineer prefers optimum launch and climb out conditions, with less emphasis on the trajectory. Long duration surface wind lulls are especially desirable. Accordingly, the surface wind ratings are based on an average of three consecutive hours with light winds. The parenthese include a percentage frequency for the 0-4 knots interval.

	Surface Winds	Jet Stream	Minimum Temperature	Rating
January	7 (63%)	10	5	10
February	8 (62%)	9	4	9
March	11 (56.5%)	12	2	12
April	12(55%)	11	1	6
May	10 (57.5%)	5	3	6
June	9 (61%)	3	9	7
July	4 (69%)	1	12	4
August	3 (70%)	2	10	2
September	2 (72%)	4	11	3
October	1 (72.5%)	6	8	1
November	5 (68.5%)	7	6	5
December	6 (68.4%)	8	7	8

3.4 WSMR Target Flights

This category is intended to cover missions requiring a rendezvous over the WSMR target areas at pre-selected times and altitudes. The new parameter which is introduced and emphasized is cloud coverage at rendezvous or X-time. Even scattered cirrus can compromise data collection in such an exercise, which includes ground based optics. The surface wind rating is based on the average location of the launch site for each month, which will be upwind of the target areas.

	Surface Winds	Clouds At X-Time	Climb Out Distance	Integrated Rating
January	5	10	12	11
February	7	9	10	9
March	9	11	11	12
April	10	7	9	8
May	6	3	5	4
June	8	2	3	3
July	11	12	4	10-
August	12	6	1	6
September	1	1	2	1
October	2	4	6	2
November	3	5	7	5
December	4	8	8	7

The most anomalous statistic here is July, which often sees about one dry week in the middle of the month. (More see Part B)

3.5. Hovering Flights

This terminology is related to fights in excess of 24 hours, which are purposely flown at the altitude of minimum winds. They may even be varied in altitude, in order to pursue this minimum flow level as the latter varies, or to take advantage of wind direction reversals between different levels.

Standard wind data in the stratosphere is in 5000 foot increments.

However, computer processed radiosondes for WSMR, in 1000 foot increments, indicate lesser speeds within these standard layers. The monthly distribution is as follows:

AVERAGE MINIMUM PER RUN

	Wind Speed 1000 Foot Intervals	Wind Speed 5000 Foot Intervals	Altitudes of Maximum Frequency Kiloft MSL
January	06	18	75, 85
February	09	16	75, 70
March	06	14	70, 80
April	03.5	11	70, 85
May	03	10	80, 75
June	03	14	55, 60
July	07	13	50, 60
August	06.5	12.5	55, 60
September	04	10.5	55, 60
October	03	10	65, 70
November	06.5	16	70, 75
December	07	16	70, 75

At higher altitudes, the same phenomena may be seen over shorter periods, during the stratosphere reversal. At 100K, the interval covers from 7 to 21 May, and roughly from 25 September to 10 October.

June is the best month for cycling a flight in the westerly flow at 50K and the stratosphere easterlies. Frequency of this pattern is over 80%. May and October follow with about 45%.

The same technique can be inversely worked for short periods, with westerlies in the high stratosphere, versus easterlies in the mid stratosphere.

Mid-April Easterlies 75 to 85K Westerlies above 100K

May Easterlies 75 to 85K Westerlies above 110K

Mid-September, easterlies 75 to 85K Westerlies above 100K

G October

An additional opportunity for such cycling is seen in the outbreaks of winter stratosphere easterlies which occur, possible systematically in certain years. In 1959 and 1963 it was over 50% of the time, from 80 to 100K.

3.6 Miscellaneous Information.

- a. Balloon Statistics:
 - 1. Stratofilm [1964 through 1991]:

Some of the balloon success records.

		Numbers	
Manufacturer	Size	sucessful/total	Percentage Rate
Winzen	108'	18/19	95%
Winzen	114'	9/10	
Raven	114'	1/1	90%
Winzen	.274mcf	63/69	100%
Raven	.274mcf	22/23	91%
Winzen	.355mcf	6/6	96%
Raven	.355mcf	5/7	100%
Winzen	.628mcf	7/7	71%
Raven	.803mcf	1/2	100%
Raven	.804mcf	4/4	50%
Raven	.859mcf	1/1	100%
Winzen	1.33 mcf	1/1	100%
Winzen	1.151mcf	1/1	100%
Winzen	2.01 mcf	103/106	100%
Raven	2.01 mcf	12/14	97%
Winzen	2.9 mcf	33/36	86%
Raven	2.9 mcf	14/17	92%
Winzen	3.02 mcf	0/2	82%
Raven	3.69 mcf	0/2	0%
Winzen	3.69 mcf	10/12	0%
Winzen	4.89 mcf	26/36	83%
Raven	4.89 mcf		72%
Winzen	5.025mcf	4/4 34/36	100%
Winzen	5.142mcf	6/7	94%
Raven	5.142mcf	7/9	86%
Winzen	8.74 mcf	4/4	78%
Winzen	10.6 mcf		100%
Winzen		23/31	74%
Raven	11.62 mcf	25/26	96%
	11.62 mcf	4/6	67%
Raven	11.66 mcf	0/1	10%
Winzen	15.8 mcf	1/1	100%
Winzen	18.75 mcf	0/1	0%
Overall average:		447/502	89%

2. Astrofilm E or E2 [1986 through 1991]:

Raven	1.23 mcf	1/1	100%
Raven	2.9 mcf	2/3	67%
Raven	3.69 mcf	1/1	100%
Raven	5.025mcf	3/4	75%
Winzen	11.82 mcf	1/1	100%
Overall Average		8/10	80%
Manufacturer	Size	Numbers sucessful/total	Percentage Rat

3. Stratofilm 372 [1988-1991]:

Winzen Winzen	2.9 mcf 3.69 mcf	2/2 3/3	100%
Overall Average		5/5	100%

Approx. missions [free & tether]: 2814

b. Success percentages last 14 years: [Free Launches ONLY until 1982]

Year	OL-AB [#]	PSL[#]	Total	Tethers
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991	86.3%[22] 84.2%[19] 100%[12] 100%[8] 91.7%[12] 77%[13] 71%[14] 64%[11] 100%[8] 75%[4] 80%[10] 71%[17] 71%[17] 71%[14] 100%[3]	100%[29] 92%[28] 88.2%[17] 78.5%[14] 77.8%[9]	94%[51] 89.3%[47] 93.1%[29] 86.3%[22] 85.7%[21] 92%[21] 91%[25] 81.6%[16] 100%[17] 89%[9] 88%[17] 86%[22] 75%[16] 100%[7]	6 15 9 5 5 8 11 5 9 5 7 4 2 4

MCF	MODEL	MFR	CONTRACT	ITEM UN OF SN REMARKS
18.750	SV-100 H84-20 29JUL84		NR779383 100 KFT FAILURE	1 1 1 BALLOON FAILURE AFTAC/JPL
15.800			N00014-73-C0383 131 KFT SUCCESS	BIMS 7 NAVY PURCHASE
11.820	AF317.60-080NSC H88-01 08JAN88			0001 1 2 001 ASTROFILM E GRAD, MCMURDO SOUND, ANTARCTICA
11.660	SV-102 H85-07 06JUN85		F29651-84-C0040 57 KFT FAILURE	0001 1 1 101 BALLOON FAILED NEAR TOP OF TROP
11.620	SV-020 H82-23 040CT82		F29651-82-C0055 127 KFT SUCCESS	
11.620	SV-020 H83-08 20APR83	RAVEN	F29651-82-C0055	0001 2 3 102
11.620	SV-020	RAVEN	F29651-82-C0055	
11.620	SV-020	WINZEN	F29651-83-C0031	0001 1 4 6 BIMS NORTHROP STRIP NO DATA
	SV-020	WINZEN	F29651-83-C0031	0001 2 4 7 ROSWELL BIMS EXPERIMENT FAILED
11.620	SV-020 H84-21 04AUG84	WINZEN	F29651-83-C0031	0001 3 4 8
11.620	SV-020 H85-08 13JUN85	WINZEN	F29651-83-C0031	0001 4 4 9
11.620	SV-020A	RAVEN	F29651-84-C0040	
11.620	SV-020A	RAVEN	F29651-84-C0040	0002 2 2 105 BALLOON TORE ON LAUNCH RUN
11.620	SV-016A H83-02 23JAN83	WINZEN	P0-16849	1 1 123
				5 5 5 HOWELL ABLE, ROSWELL, NM
8.740	SF277.88-100NSC H84-22 24AUG84	WINZEN	PO-M42476	3 3 8
	SV-017B H82-18 17.IIII.82			0002 2 8 102 NASA/GALILEO ROSWELL, NM
5.142	SV-017B	RAVEN	F19650-81-C0054	NASA/GALILEO ROSWELL, NM
5.142	SV-017B H85-02 30APR85	RAVEN	F19650-81-C0054	0002 4 8 104
5.142	SV-017B	RAVEN	F19650-81-C0054	
5.142	SV-017B	RAVEN	F19650-81-C0054	0002 6 8 106
5.142	SV-017B	RAVEN	F19650-81-C0054	CORPUS CHRISTI FAILED AT LAUNCH 0002 7 8 107

MCF	MODEL	MFR	CONTRACT	ITEM UN OF SN REMARKS
	SV-017B	RAVEN	F19650-81-C0054	CORPUS CHRISTI INFLATION FAIL 0002 8 8 108 CORPUS CHRISTI, TX BAMM
5.142	SF234.29-100NSC	WINZEN	M-25015	
			F29651-81-C0088 101 KFT FAILURE	0003 2 3 94 SCRIBE/VANASSE LEAKY BALLOON
			F29651-81-C0088 KFT FAILURE	0003 3 3 95 BIMS, BALLOON BURST
			F29651-82-C0055 106 KFT SUCCESS	0002 1 1 101 REEFING SLEEVE HUNG UP, BIMS
			F29651-83-C0031 106 KFT SUCCESS	
5.025			F29651-83-C0031 103 KFT SUCCESS	0002 2 2 97 ROSWELL, NM SCRIBE/VANASSE
5.025				0002 1 3 103 ASTROFILM E RAMOMA, CA, KESTREL/LLNL
5.025				0002 3 3 105 ASTROFILM E SCRIBE, ROSWELL, NM, EXP FAILED
4.890			F29651-78-C0046 119 KFT SUCCESS	
3.690			F19650-78-C0060 106 KFT SUCCESS	
3.690				0002 1 2 101 ASTROFILM E ASTROFILM E TEST, ASHCAN
3.690	SV-018	RAVEN	F19650-85-C0067	0002 2 2 102 ASTROFILM E ASTROFILM E TEST
2.900			F19650-78-C0060 98 KFT SUCCESS	OOO2 5 5 112 GRAVITY GRADIOMETER
2.900			F29651-80-C0058 97 KFT SUCCESS	
2.900			F29651-80-C0058 98 KFT SUCCESS	
2.900			F29651-81-C0088 KFT FAILURE	OOO1 1 2 115 GRAVITY GRADIOMETER LAUNCH FAIL
2.900			F29651-81-C0088 100 KFT SUCCESS	OOO1 2 2 116 GRAVITY GRADIOMETER
2.900				0004 3 3 116 ASTROFILM C BURST GOING THRU TOP OF TROP
2.900	LTV-013A	RAVEN	F29651-86-C0018	0003 1 2 117 ASTROFILM E ASTROFILM E TEST, NASA U-2
2.900	LTV-013A	RAVEN	F29651-86-C0018	0003 2 2 118 ASTROFILM E CHUTE FAILED TO OPEN ON CUTDOWN
2.010	LTV-007	RAVEN	F19650-72-C0377	0004 6 9 115

MCF	MODEL	MFR	CONTRACT	ITEM UN OF SN REMARKS
2.010 2.010 2.010 2.010	LTV-007 H82-20 17AUG82 LTV-007 H82-19 05AUG82 LTV-007 H83-05 18FEB83 LTV-007 H83-11 20MAY83 LTV-007	RAVEN 1728 LB RAVEN 1610 LB WINZEN 988 LB WINZEN 1388 LB WINZEN	F19650-76-90024 80 KFT SUCCESS F19650-76-90024 90 KFT SUCCESS F29651-82-C0087 100 KFT SUCCESS F29651-82-C0087	ASHCAN 0003 4 4 122 ASHCAN 0002 1 4 89 7659 DIGITAL CMD & TM TEST 0002 2 4 90 SHARP IIA, ROTATOR/DME/TV TEST 6 6 181
1.330	H86-10 30JUL86 SF145.67	WINZEN	76 KFT SUCCESS P0-9641-86	1 2 1 SCRIBE99 ROSWELL, NM, SCRIBE99 2 2 SCRIBE99 ROSWELL, NM, SCRIBE99
	LTV-027 H85-01 06MAR85		F19650-82-C0062 96 KFT SUCCESS	0002 1 3 1 7659 PROFICIENCY
	TT-001D H84-02 31JAN84		AF19(628)-3284 KFT NO TEST	0001 6 20 7659 PROFICIENCY NO RELEASE
	TT-001D H88-02 O7MAR88	GEN MIL	AF19(628)-3284	0001 7 20 NO VLVE TNG ONLY HIGH LAUNCH WIND TEST
	TT-001D H88-03 10MAR88			0001 11 20 NO VLVE TNG ONLY HIGH LAUNCH WIND TEST
	TT-001D H87-09 19N0V87			0001 13 20 110 NO VLVE TNG ONLY OVER THE SHOULDER LAUNCH TEST
.804	TT-001D	WINZEN	AF19(628)-3295	0001 17 20 114 NO VLVE TNG ONLY OVER THE SHOULDER LAUNCH TEST
			F29651-80-C0017 78 KFT SUCCESS	0003 4 5 104 ROSWELL, NM, SCRIBE99 PATHFINDR
			F29651-80-C0017	
. 355	LTV-018	RAVEN	65 KFT SUCCESS F29651-80-C0017 72 KFT SUCCESS	
	LTV-008 H87-03 16MAY87		F29651-79-C0020 67 KFT SUCCESS	0001 2 4 115 NO C/RNG TOP CON ALFAN/TURTLE
.010	H86-02 12MAR86	RAVEN 3.5 LB	85 KFT SUCCESS	* *14990 PATHFINDR TEST PATHFINDER & LAPING TIMER
	N30-GL-0.003150 H86-04 12APR86			1 19 101 PATHFINDER
.003	N30-GL-0.003150	RAVEN	KFT NO TEST PO-85619 78 KFT SUCCESS	9 19 109 PATHFINDER

MCF	MODEL	MFR	CONTRACT	ITEM UN OF SN REMARKS
.000	1000 GM			RAOB
000	H84-23 26SEP84 1000 GM	1 LB	80 KFT SUCCESS	PATHFINDER TEST RAOB
.000	H84-24 27SEP84	1 LB	96 KFT SUCCESS	PATHFINDER TEST
.000	ML-537-A/UM	KAYSAM	DAAB07-79-C0807	* *11366/1715
	H83-22 **	10/7 LB	*** KFT SUCCESS	**2 FLTS 08/09N0V83 ***80/90
.000	ML-537-A/UM	KAYSAM	DAAB07-79-C0807	* *1723-1135064
	H83-10 **	4.25 LB	95 KFT SUCCESS	**4 FLTS 11/12/19MAY83 BROWN
.000	ML-537-A/UM	KAYSAM	DAAB07-79-C0807	* *11157
	H83-03 09FEB83	4.25 LB	100 KFT SUCCESS	HANSCOM, BROWN
.000	ML-537-A/UM	KAYSAM	DAAB07-79-C0807	* *11158
			100 KFT SUCCESS	
.000				* *11378
			93 KFT SUCCESS	
.000				* *11376
			93 KFT SUCCESS	
.000			F19650-72-C0591	
	H83-14 23JUL83			NASA/GALILEO PATHFINDER ROSWELL
.000	2335-536-888	RAVEN	F19650-72-C0591	
	H83-15 24JUL83	26 LB	90 KFT SUCCESS	NASA/GALILEO PATHFINDER ROSWELL

DEPARTMENT OF THE AIR FORCE AIR FORCE CAMBRIDGE RESEARCH LABORATORIES (AFSC) LAURENCE G. HANSCOM FIELD, BEDFORD, MASSACHUSETTS 01730

REPLY TO ATTN OF: LCA

15 May 1973

SUBJECT: Ballast (8 May telecon with Mr. Gildenberg)

To: LCD (Attn: Mr. Gildenberg)

1. Iron Shot

We currently buy iron shot in accordance with Mil-S-851B, Type II, Class 2, size S-230. The SAE specification for particle size S-230 is as follows:

> #18 Screen (.0394 in.)All Pass #20 Screen (.0331 in.) 10% Max. on Screen #30 Screen (.0232 in.) 85% Min. on Screen #35 Screen (.0197 in.) 97% Min. on Screen Pan 3% Max. Density 280#/ft3

Glass Beads

The last purchase (1967) of glass ballast from Ballatini included several particle sizes:

Classification I

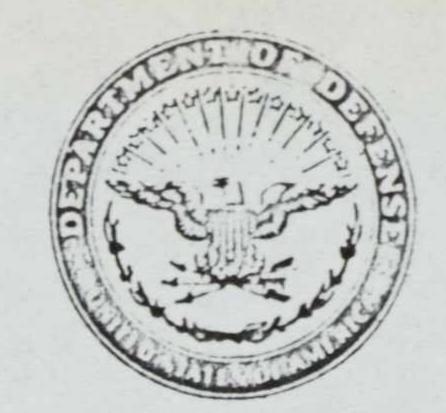
Screen #40-60 Size C (.0165 - .0098)Size D Screen #50-70 .0117-.0083) Size G Screen #80-120 .0070-.0049) Density 80#/ft3

3. Lead Shot

The lead shot purchased for Viking was a 50% mixture of size S-110 and S-230. The SAE specification for size S-230 is given in paragraph 1, S-110 as follows:

> #30 Screen (.0232 in.) All Pass #35 Screen (.0179 in.) 10% Max. on Screen #50 Screen (.0117 in.) 70% Min. on Screen #80 Screen (.007 in.) 90% Min. on Screen

> > CC: LCE


Density 454 #/ft3

THOMAS J. DANAHER, Chief Balloon Flight Requirements

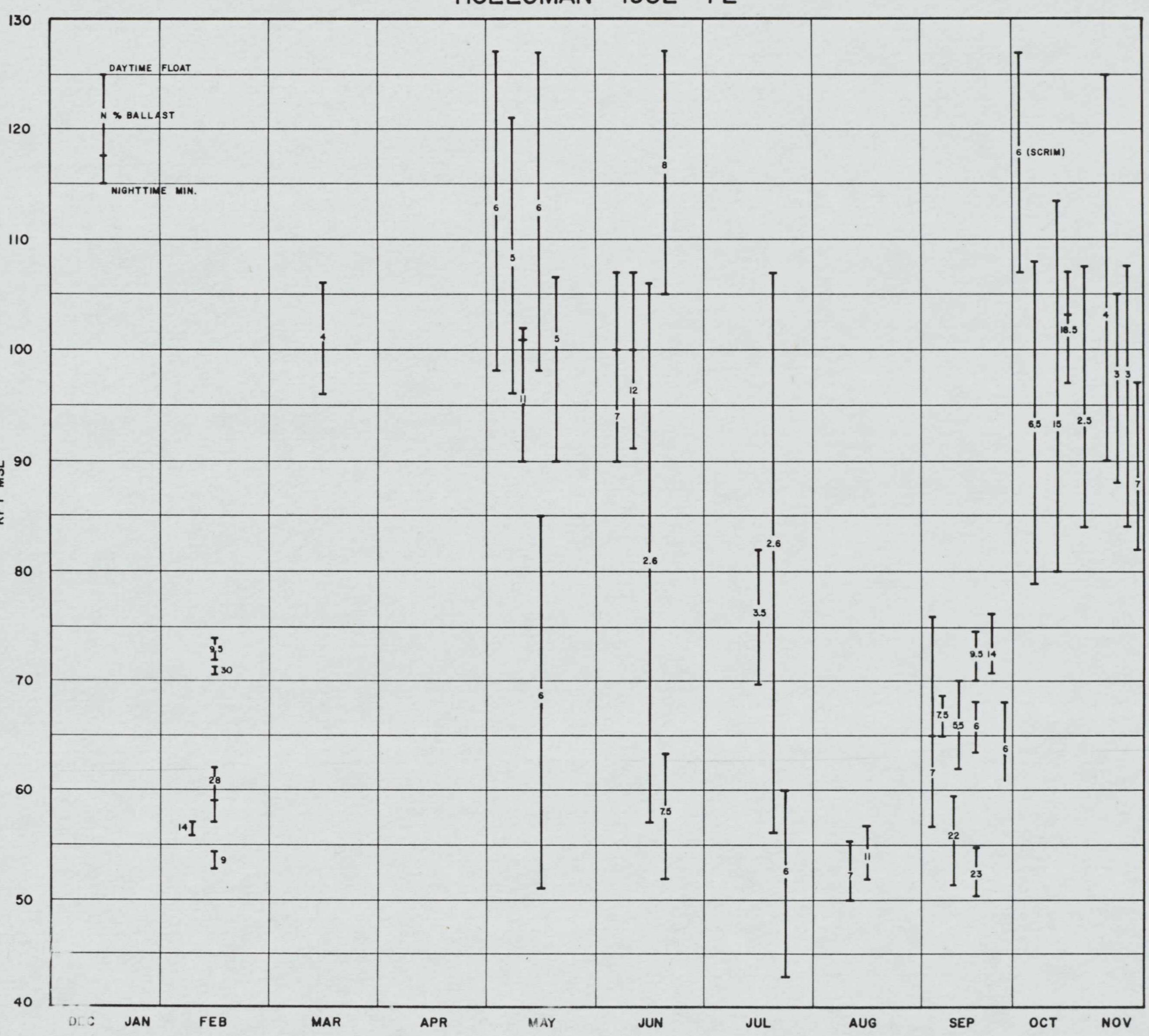
Analysis Branch

Aerospace Instrumentation Laboratory

DEPARTMENT OF THE AIR FORCE DET 1, AIR FORCE CAMBRIDGE RESEARCH LABORATORIES (AFSC) HOLLOMAN AIR FORCE BASE, NEW MEXICO 88330

ATTN OF: LCD (Mr. Gildenberg/4421)

6 August 1973


SUBJECT: Trans-sunset Ballast Profiles

To: LCC/Mr. J. Payne

- 1. A graph was made from all available data for overnight flights at LCD, for the past 20 years. (See attachment 1)
- 2. The interim notch on the legend indicates the night time equilibrium float when it was higher than the minimum altitude.
- 3. The most obvious conclusion is that the closer to ceiling a flight was maintained, the more ballast required. The graph indicates that from 9 to 30% is required for remaining within 2000 feet of float, and 30% within 1000 feet. On the other hand, if one allows a balloon floating near 100K to drop all the way to the top of the tropopause, 3% may be adequate.
- 4. The rule of thumb for for an average overnight flight has been 10% ballast required to compensate for the sunset. However, in this summary, for altitude drops of more than 5K, 86% required less than 10% ballast, and 83% less than 8%.
- 5. If similar data is available form Chico, Vernalis Flights, it might be worth while to add them to the master drawing for this graph.

BERNARD L. GILDENBERG, GS-14 Det 1, AFCRL (AFSC)

Copies to Mr. G. Nolan Mr. J. Dwyer

THE AIR TEMPERATURE WAS 10 DEGREES ABOVE ZERO...AND THE WIND SPEED WAS 25 MPH...WOULD BE -29 DEGREES.

AIR TEMPERATURE . . . FAHRENHEIT . . .

•			35	30	25	20	15	10		0	E	-10	-15	-20
•	CAL			30		20	******	10	1	0		-10		-20
I N		*****	33	27	21	16	12	7	-	6	1 1	1	-20	25
D			21	16	9	4		-9	-15		27		35	-45
• S	1	****		the state of the s			Therease the same of the same	15	-25	-33	-40	-45		(<u>-</u> ,(<u>)</u>
	20		13											
D	7 E		7	0	7	1 5		25	-37	4 1	1	<u>!</u> :	E7	-75
• M	30	****	Ş	22	1 1	-15		:	-41	-49	-55	-63	-70	-78
		*****				20								
	40		· Proceedings	/i.	-15			-:16	-4.5	-54	-62	(-)	7 <u>-</u>	37

WIND SPEED GREATER THAN 40 MPH HAVE LITTLE ADDITIONAL COOLING EFFECT.